
About the domino problem in the hyperbolic plane,

a new solution: complement

Maurice Margenstern,
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Abstract

In this paper, we complete the construction of paper [9, 11]. To-
gether with the proof contained in [9, 11], this paper definitely proves
that the general problem of tiling the hyperbolic plane with à la Wang
tiles is undecidable.

1 Introduction

The question, whether it is possible to tile the plane with copies of a fixed
set of tiles was raised by Wang, [14] in the late 50’s of the previous century.
Wang solved the partial problem which consists in fixing an initial finite
set of tiles: indeed, fixing one tile is enough to entail the undecidability of
the problem. The general case, later called the general tiling problem

in this paper, GTP in short, without condition, in particular with no fixed
initial tile, was proved undecidable by Berger in 1966, [1]. Both Wang’s
and Berger’s proofs deal with the problem in the Euclidean plane. In 1971,
Robinson found an alternative, simpler proof of the undecidability of the
general problem in the Euclidean plane, see [12]. In this 1971 paper, he
raises the question of the general problem for the hyperbolic plane. Seven
years later, in 1978, he proved that in the hyperbolic plane, the partial
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problem is undecidable, see [13]. Up to now, and as far as I know, GTP

remained open.
In this paper, we complete the proof that GTP is also undecidable in

the case of the hyperbolic plane which is given in [9, 11].
In a first section, we sketchilly remember the construction of [9, 11] and

we very briefly remember the reader the construction of the mantilla and its
properties already proved in [8, 10].

In the second section, we give the needed complement. This will com-
pletely prove that:

Theorem 1 The general problem of tiling the hyperbolic plane is undecid-
able.

Then, we conclude with remarks on further improvements and a few
corollaries which we already obtained from the theorem.

In this section, first, we very briefly mention the construction of the
mantilla, the basic frame in which the different implementations performed
by our construction take place.

In the next sub-section, we briefly remind the abstract brackets which
is the key new tool of the general frame of the proof. This one-dimensional
construction is mentioned in [5], and it is at the basis of Berger’s proof of
GTP for the Euclidean plane. Robinson’s proof of GTP for the Euclidean
plane is based on a two-dimensional adaptation of the one-dimensional ar-
gument. Paper [5] focuses at the two-dimensional construction and gives a
deep account on this situation, especially from an algebraic point of view.

Then , we briefly look at implementation of the one-dimensional con-
struction in the Euclidean plane, lifting the intervals of this model into
triangles. Such a construction is called an infinite model. This imple-
mentation is transported into the hyperbolic plane, infinitely many times.
This entails a kind of cutting of the construction which we analysed in our
study of the one-dimensional construction under the name of semi-infinite

model. The final step of the construction consists in indicating a way to
synchronize all these implementations in such a way that they appear as
different cuts of a single infinite model. The key property of these triangles
is that there are infinitely many of them for infinitely many heights.

The last point is to implement a grid in each of these domains. It allows
to implement a space time diagram of the same Turing machine, as in the
classical proofs of Berger and Robinson. The complement does not change
this part of the proof which remains what it is in [9, 11].

The reader is invited to look at the technical report, [11] on which the
paper is based and which is available at the following address:
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http://www.lita.sciences.univ-metz.fr/~margens/new hyp dominoes.ps.gzip,

where full proofs can be found of what is indicated in this section.

1.1 The mantilla

Here, we consider the tessellation {7, 3} of the hyperbolic plane, which we
call the ternary heptagrid, simply heptagrid, for short, see [2, 7]. It is

generated by the regular heptagon with vertex angle
2π

3
by reflections in its

sides and, recursively, of the images in their sides.

1.1.1 The flowers

In the ternary heptagrid, a ball of radius n around a tile T0 is the set of tiles
which are within distance n from T0 which we call the centre of the ball.
The distance of a tile T0 to another T1 is the number of tiles constituting
the shortest path of adjacent tiles between T0 and T1. We call flower a ball
of radius 1.

a b

Figure 1 On the left: Robinson’s basic tiles for the undecidability of the tiling
problem in the Euclidean case. On the right: the tiles a and b are a ’literal’ trans-
lation of Robinson’s basic tiles to the situation of the ternary heptagrid.

a c α β

Figure 2 On the left: change in the tiles à la Robinson. On the right: their
translation in pure Wang tiles.

The mantilla consists in merging flowers in a particular way. It comes
from an attempt to implement Robinson’s construction in the Euclidean
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plane based on the left-hand side tiles of figure 1. The right-hand side tiles
of the figure are their ’literal’ translation. It is not difficult to see that it is
not possible to tile the hyperbolic plane with tiles a and b. However, a slight
modification of the tile b, see the tile c in figure 2, leads to the solution.

On the right hand side of figure 2, we have the transformation of tiles a

and c into Wang tiles. We call the tile α a centre and the tile β a petal.
We refer the reader to [10, 11] for the numbering technique allowing to force
the tiles β to be put around tiles α. Now, a petal belongs to three flowers
at the same time by the very definition of the implementation. From this,
there is a partial merging of the flowers.

It is not difficult to see that there can be several types of flowers, con-
sidering the number of red vertices for which the other end of an edge is a
vertex of a centre. We refer the reader to [10] for the corresponding prop-
erties. Here, we simply take into consideration that we have three basic
patterns of flowers, which we call F -, G and 8-flowers respectively. They
are represented by figure 3.

The figure also represents the way which allows to algorithmically con-
struct the tiling resulting from the tiles α and β which we call the mantilla.
It consists in splitting the sectors generated by each kind of flowers in sub-
sectors of the same kind and only them, which we call the sons of the flower.
From this, we easily devise a way to recursively define a tiling. The con-
struction is deterministic below the flower, and it is non-deterministic when
we proceed upwards. We do not make the notion of top and bottom more
precise: it will be done later. The exact description of the splitting can be
found in [10]. We simply remark that such a splitting is an application of
the general method described in [6], for instance.

15

6 17

7

45

46

47

48
4919

118

119

120

121

122
123

5

3
1

14

13

36

37

34

35

94

95

96

97

98

89

90

91

92

93
246

247

248

249

250

251

252

253

254

255

256

257

258

39

38

102

103

99

100

101

267

268

269

270

271

259

260

261

262

263

264

265

266

40

104

105 106
272

273
274

275 276 277 278 279

41

107
108

109

280
281

282
283

284

285

286

287

16

42

43

44

110

111

112

113

114

115

116

117

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

A
B

C

F

15

6

18
7

45

46

47

5

3
1

14

13

36

37

34

35

94

95

96

97

98

89

90

91

92

93
246

247

248

249

250

251

252

253

254

255

256

257

258

39

38

102

103

99

100

101

267

268

269

270

271

259

260

261

262

263

264

265

266

40

104

105 106
272

273
274

275 276 277 278 279

41

107
108

109

280
281

282
283

284

285

286

287

16

42

44

110

111

112

113

114

115

288

289

290

291

292

293

294

G

15

6 17

18

45

46

47

48

19

118

119

120

121

122
123

124

125

126

5

2

3

14

13

36

37

34

35

94

95

96

97

98

89

90

91

92

93
246

247

248

249

250

251

252

253

254

255

256

257

258

39

38

102

103

99

100

101

267

268

269

270

271

259

260

261

262

263

264

265

266

40

104

105 106
272

273
274

275 276 277 278 279

41

107
108

109

280
281

282
283

284

285

286

287

16

42

43

44

110

111

112

113

114

115

116

117

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

A B

C

8

Figure 3 Splitting of the sectors defined by the flowers. From left to right: an
F -sector, G-sector and 8-sector.

Based on these considerations, we have the following result which is
thoroughly proved in [10]:
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Lemma 1 There is a set of 4 tiles of type α and 17 tiles of type β which
allows to tile the hyperbolic plane as a mantilla. Moreover, there is an
algorithm to perform such a construction.

1.1.2 Trees of the mantilla

Note that the left-most flower of figure 3, which represents an F -sector,
also indicates a region delimited by continuous lines, yellow in coloured
figures. This lines are mid-point lines, which pass through mid-points of
consecutive edges of heptagons of the heptagrid. As shown in [2, 7], they
delimit a Fibonacci tree. The tiles inside the tree which are cut by these
mid-point rays are called the borders of the tree, while the set of tiles
spanned by the Fibonacci tree is called the area of the tree.

Say that an F -son of a G-flower is a seed and the tree, rooted at a
seed is called a tree of the mantilla. As the seeds are the candidates for
the construction of a computing region, they play an important rôle. From
figure 3 we can easily define the border of a sector which is a ray crossing
8-centres. See [10] for exact definitions.

Lemma 2 The borders of a tree of the mantilla never meet the border of a
sector.

From lemma 2, as shown in [10], we easily obtain:

Lemma 3 Consider two trees of the mantilla. Their borders never meet.
Either their areas are disjoint or the area of one contains the area of the
other.

From this, we can order the trees of the mantilla by inclusion of their
areas. It is clear that it is only a partial order. We are interested by the
maximal elements of this order. We call them threads, see [10] for an exact
definition. Threads are indexed by IN . Among them, there can be a unique
ultra-thread which is indexed by ZZ. Note that the union of the areas of
the trees which belong to an ultra-thread is the hyperbolic plane. There can
be realizations of the mantilla with or without an ultra-thread.

1.1.3 Isoclines

In [11], we have a new ingredient. We define the status of a tile as black or
white, defining them by the usual rules of such nodes in a Fibonacci tree.
Then, we have the following property:
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Lemma 4 If a seed is a black tile, all other seeds in the area of the tree of
the mantilla which it delimits are black tiles. Also, within the same area,
the 8-centres are all black tiles.
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Figure 4 The black tile property and the levels:
On the left-hand side, a black F -centre; on the right-hand side, a black Gℓ-centre.
We can see the case of an 8-centre on both figures.

As shown in [11], we can define arcs as follows: in a white tile, the arc
joins the mid-points of the sides which have a common vertex with the side
shared by the father. In a black tile, the arc joins the mid-point of the sides
which are separated by the side shared by the father and the side shared by
the uncle, which is on the left-hand side of the father. Joining the arcs, we
get paths. The maximal paths are called isoclines. They are illustrated in
figure 4. An isocline is infinite and it splits the hyperbolic plane into two
infinite parts. The isoclines from the different trees match, even when the
areas are disjoint.

Lemma 5 Let the root of a tree of the mantilla T be on the isocline 0.
Then, there is a seed in the area of T on the isocline 5. If an 8-centre A

is on the isocline 0, starting from the isocline 4, there are seeds on all the
levels. From the isocline 10 there are seeds at a distance at most 20 from A.

We number the isocline from 0 to 19 and repeat this, periodically. This
allows to give sense to upwards and downwards in the hyperbolic plane.

1.2 The abstract brackets

We refer the reader to [11] for an exact definition. However, figure 5, below,
illustrates the construction which now, we sketchily describe.

The generation 0 consists of points on a line which are regularly spaced.
The points are labelled R, M , B, M , in this order, and the labelling is
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periodically repeated. An interval defined by an R and the next B, on its
right-hand side, is called active and an interval defined by a B and the
next R on its right-hand side is called silent. The generation 0 is said to be
blue.

R B

B R

B M

M M M MBR

M M BR MM M BR M M BR M M BR

MR B M MR B M MR M MR B M MR B M MR B M MR B M MR B

X YM

M

M

MMM

Figure 5 The silent and active intervals with respect to mid-point lines. The
light green vertical signals send the mid-point of the concerned interval to the next
generation. The colours are chosen to be easily replaced by red or blue inan opposite
way. The ends X and Y indicate that the figure can be used to study both active
and silent intervals.

Blue and red are said opposite. Assume that the generation n is defined.
For the generation n+1, the points which we take into consideration are the
points which are still labelled M when the generation n is completed. Then,
we take at random an M which is the mid-point of an active interval of the
generation n, and we label it, either R or B. Next, we define the active
and silent intervals in the same way as for the generation 0. The active and
silent intervals of the generation n+1 have a colour, opposite to that of the
generation n.

When the process is achieved, we get an infinite model. The model
has interesting properties, see [11]. We cannot mention all of them here. We
postpone some of them to the Euclidean implementation with triangles.

In an interval of the generation n, consider that a letter of a generation m,
m ≤ n, which is inside an active interval is hidden for the generations k,
k ≥ n+1. Also, a letter has the colour of its generation. Now, we can
prove that in the blue active intervals, we can see only one red letter, which
is the mid-point of the interval. However, in a red active interval of the
generation 2n+1, we can see 2n+1+1 blue letters.

Cut an infinite model at some letter and remove all active intervals which
contain this letter. What remains on the right-hand side of the letter is called
a semi-infinite model.
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It can be proved that in a semi-infinite model, any letter y is contained
in at most finitely many active intervals, see [11].

1.3 Interwoven triangles

Now, we lift up the active intervals as triangles in the Euclidean plane.
The triangles are isoceles and their heights are supported by the same line,
called the axis, see figure 6.

We also lift up silent intervals of the infinite model up to again isoceles
triangles with their heights on the axis. To distinguish them from the others,
we call them phantoms. We shall speak of trilaterals for properties shared
by both triangles and phantoms.

Figure 6 An illustration for the interwoven triangles.

We have very interesting properties for our purpose.

Lemma 6 Triangles of the same colour do not meet nor overlap: they are
disjoint or embedded. Phantoms can be split into towers of embedded phan-
toms with the same mid-point and alternating colours. Trilaterals can meet
by a basis cutting the half of leg which contains the vertex.

From these properties, we prove in [11] that:

Lemma 7 the Euclidean plane which can be forced by set of 190 tiles.

In [11], we display the corresponding tiles which are in a square format,
and we also describe them with the help of formulas taking into account the
properties of lemma 6.
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1.4 Hyperbolic implementation and the computing areas

We implement the interwoven triangles in the hyperbolic plane by using the
trees of the mantilla as frames for the legs of the trilaterals. The basis is
materialized by the trace of an isocline in the area of the trilateral.

1.4.1 The synchronization

The axis will be somehow materialized by a thread. As most threads are
indexed by IN only, we have always the implementation of a semi-infinite
model. Now, we shall manage the implementation in such a way that the
semi-infinite models are simply different cuts of the same infinite model.
The possibility of the realization of the infinite model in the case of an
ultra-thread brings in no harm.

To achieve this point, we very briefly indicate a feature of the tiles. The
legs of a triangle emit horizontal signals outside the triangle. The signals
have the same colour as the emitting triangle and they have a laterality.
The left-hand side leg emits left-hand side signals, the right-hand side leg
emits right-hand side ones. Both kinds of signal cross the tiles in an upper

or lower position, always at the lower one for the vertex. Phantoms also
emit signals, only at the vertex, in a lower position, and at the corner of
the basis, in an upper position.

The tiling forces the construction of trilaterals generation after genera-
tion. A vertex of the next generation grows legs downwards until they meet
the green signal which indicates the mid-point of the legs. Triangles stop
their green signal, phantoms do not.

To synchronize the semi-infinite models, bases of triangles which are
on the same isocline merge. The distinction between outside and inside a
triangle is given by the presence or absence of the upper horizontal signal
of the same colour as the basis. We say that the basis is covered or open.
Inside a triangle, the left-hand side and right-hand side signals can be joined
only at a vertex, and so, they must be lower signals. Outside a triangle,
horizontal signals of different lateralities can be joined, as the directions
from where the signals come are the opposite with respect to what happens
inside a triangle. The needed tiles are provided only for meetings outside
trilaterals.

Now, the distinction between a covered and an open basis allows the
implementation of the construction using the tiles devised for lemma 7,
using the same algorithm of construction. Indeed, first halves of legs, i.e.
from the vertex to the mid-point, may cut bases, either covered or open,
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leaving them covered or open respectively. The change to the second half is
triggered by the detection of the green signal. Next, the second half meets
covered bases. The first open basis, necessarily of its colour, is the expected
basis for this trilateral.

Note that inside a trilateral and between the same set of isoclines, there
are several triangles of former generations. In the next section we manage
this point for which the complement given in this paper is needed.

1.4.2 The computing areas

They are defined by the active seeds which we now define.
By definition, we decide that all seeds which are on an isocline 0 are

active. This is enough to guarantee that the set of active seeds is dense in the
hyperbolic plane. Next, an active seed diffuses a scent inside its trilateral
until the isocline 5, starting from this seed, is reached. Seeds which receive
the scent, and only them, become active. An active seed also triggers the
green signal. By construction, The generation 0 is not determined by the
meeting of a green signal. But the others are.

We can see that the scent process constructs a tree. The branches of the
tree materialize the thread which implements the considered semi-infinite
model. Note that the above synchronization mechanism fixes things for
spaces between triangles but also inside them.

An important mechanism provided by the tiles of lemma 7 is the detec-
tion of the free rows inside red triangles. These free rows are the isocline
whose projection on the axis is a blue letter, visible in the active interval
defined by the height of the triangle. It is not difficult to provide tiles for
that, also based on the red horizontal signals of different lateralities and
positions, see [11].
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Figure 7 The perpendicular starting from a point of the border of a triangle which
represents a square of the Turing tape.

On the left-hand side: the case of the vertex. On the right-hand side, the three
other cases for the right-hand side border are displayed on the same figure.
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The free rows inside the red triangles are the horizontal of our com-
puting areas. It remains us to define the verticals which are needed for
implementing the space-time diagram.

The verticals consist into rays which cross 8-centres. Figure 7 illustrates
how they are connected to the different possible cases of contact of the
isocline of a free row with the border of the tree.

The computing signal starts from the seed. It travels on the free rows.
Each time a vertical is met, which contains a symbol of the tape, the required
instruction is performed. If the direction is not changed and the correspond-
ing border is not met, the signal goes on on the same row. Otherwise, it
goes down along the vertical until it meets the next free row. There, it looks
at the expected vertical, going in the appropriate direction. Further details
are dealt with in [11] and are rather close to the classical proofs.

2 The complement

In this section, we deal with the tuning promised in sub-section 1.4.1, about
the description of the synchronization mechanism.

2.1 The point to be tuned

In fact, in sub-section 1.4.1, we describe the synchronization problems raised
by the bases and vertices, in order to obtain that all the threads implement
a cut of the same infinite model of the abstract brackets. Of course, if
the bases and vertices are synchronized, the mid-lines of the trilaterals are
also synchronized. As mentioned in sub-section 1.4.1, this time we have
infinitely many copies of the same trilateral within a same set of isoclines:
call such a set a latitude. Now, we have to closer look at the possible
interactions between the trilaterals which occur within a fixed latitude. Also
call amplitude the number of isoclines contained in a given latitude. The
problem is that in between two contiguous triangles of the same latitude Λ,
there may be and, usually, there are trilaterals of smaller generations, whose
latitude is contained in Λ. Now, a part of the phantoms within Λ have the
same mid-line as the triangles whose height is the amplitude of Λ. Now,
when we consider the phantoms which are crossed by this mid-line between
two consecutive triangles T1 and T2, the green line which they emit runs
along the mid-line. As the legs of a phantom do not stop the green signal,
nothing prevent them to meet the legs of T1 and T2. Now, they should not
meet these legs as the legs of a triangle stop the green signal.
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2.2 A possible mechanism

The mechanism is the following. Any triangle T of a given latitude Λ whose
height is the amplitude of Λ, stops the green signal which runs on its mid-
line. Now, outside its legs, on the mid-line, T stretches out two antennas:
a left-hand- and a right-hand side one. They rôle is to detect, the anteanna
sent by the next triangle of the same latitude in the direction followed by
the antenna.

What we need is a characterization of the structure of the trilaterals
within a given latitude. This is provided by the following lemma:

Lemma 8 Let T and T ′ be two consecutive triangles of the same gener-
ation n and within the same latitude Λ whose amplitude is the common
height of T and T ′. Let A be the mid-point of the right-hand side leg of T

and let B be the mid-point of the left-hand side leg of T ′. Then, there is a
tile C and a tile D on the isocline passing through A and B such that the
interval [C,D] is contained in the interval [A,B] and: if a leg of a trilateral
of a generation m, with m > n, crosses ]A,C[, ]D,B[ respectively, then it
is a right-hand side leg, a left-hand side leg respectively, of this trilateral.
Moreover, [C,D] is not crossed by any leg of a trilateral belonging to a gen-
eration m, with m > n. A leg ending with a corner within [A,C] or [D,B]
is considered as a crossing leg.

Proof. Let I be the isocline which contains A and B. Between A and B, I

crosses several legs of trilaterals. It crosses both legs of a trilateral if and
only if the trilateral belongs to a smaller generation: it is contained in Λ.
In this case, the trilateral is a phantom. It cannot be a triangle: smaller
triangles have their projection within the projection of a half leg of T and
so, they cannot meet I.

Figure 8 The principle of the antennas.
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Now, a triangle of the next generation would be raised in the mid-line
of a triangle K of Λ and inside K. This is impossible as there is no triangle
of Λ between A and B. And for still bigger trilaterals, if both legs are
crossed, the trilateral contains a triangle of the generation of T within Λ
too. Indeed, once a trilateral exists, it contains all possible trilaterals which
can be contained within its area.

Accordingly, when I crosses both legs of a trilateral, it is a phantom
and, more over, the mid-line of this phantom is supported by I. This is a
consequence of the properties of silent intervals.

From this analysis, we conclude that there is a tile C on I between A

and B such that on the left-hand side of C with the following property. Con-
sidering the crossing of I, if any, by legs of trilaterals of bigger generation,
we have that the intersected right-hand side legs are all on the left-hand side
of C and that the intersected left-hand side legs are all on the right-hand
side of C. In fact there are several such tiles C which constitute an interval
of I, between A and B. Let us denote this interval by [C,D].

As phantoms sharing the same mid-line are constituted in towers, within
a latitude Λ, a tower is necessarily finite and so, it contains an eldest

phantom.
The antenna coming from T will cross the right-hand side legs which are

on the left-hand side of C and it will jump over all eldest phantoms whose
both legs are crossed by I and which stand between A and C. The antenna
coming from T ′ will do the same for the eldest phantoms whose both legs are
crossed by I and which stand between B and D. In between C and D, there
are only phantoms within Λ. The antennas go on jumping other the eldest
ones they meet until both antennas meet on some tile of [C,D], outside any
phantom, see figure 8.

Remark. We can prove that in between two contiguous triangles of the
same generation and within the same latitude Λ, there is at most one leg
of a higher generation crossing A and B: either of the generation n+1
or of the generation n+2. It belongs to a generation generated by one
of the two triangles or generated by the former one.

This can be proved as follows.
First, say that a triangle T is the father of a trilateral K if T

is of the generation n and K is of the generation n+1 and if the vertex
of K is on the mid-line of T inside T . Note that a trilateral has a
unique father and that a triangle has a lot of sons. We can repeatedly
apply this definition to a trilateral K, leading to a sequence T0, . . . Tm of
triangles with T0 of the generation 0, such that Ti is the father of Ti+1,
for i ∈ {0..m−1} and that Tm = K. In this case, T0 is called the
remotest ancestor of K.

From the study performed in [11] and from the results indicated in
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sub-ection 1.2 of this paper, the height of a trilateral of the generation n
is 2n+1+1 if measured by the number of the isoclines crossing its legs,
vertex and basis being included in this account. Now, it is not difficult
to show that the distance of the mid-line of a trilateral to the vertex
of its remotest ancestor is 2n+1, measured in the same way: we count
the isoclines crossing the legs from the mid-line to the vertex of the
remotest ancestors, the last vertex and the initial mid-line being taken
into account.

Let T1 and T2 be the contiguous triangles of exactly the same lati-
tude and let A and B as in lemma 8. Assume that a trilateral P whose
basis is also generated by T1 exists and that the right-hand side leg δ
of P crosses AB, taking into account that, at a corner on AB, we con-
sider that the leg crosses AB. Then, the ancestor A1 of T1 is on the
closest isocline 0 to the mid-line λ of P , under λ, and the ancestor A2 is
also on this isocline. Now, A2 is outside P , otherwise T2 would also be
inside P , which contradicts the assumption. Now, there is no other seed
on the isocline 0 between the vertices of A1 and A2. If there would be
another one σ, σ would be the vertex of a triangle A3 of the generation 0
and, the same trilaterals as those occuring inside the trees rooted at the
vertices of A1 and A2 would also occur inside the tree rooted at the
vertex of A3. In particular, there would be a triangle T3 of the genera-
tion of T1 and in the same latitude and which would stand between T1

and T2. This is impossible by our assumption.
Now, if there would be another leg ℓ crossing AB belonging to a

trilateral of the generation m with m > n, then ℓ would be between δ
and A1, for instance. It is easy to see that it must be a right-hand
side leg. Otherwhise, the trilateral Q defined by ℓ would contain A2

as, were it not be the case, this trilateral would contain a copy of T1

which would stand in between T1 and T2, again a contradiction. But if
Q contains A2, it also contains a trilateral generated by T2, which is a
copy R of P and, necessarily, R would stand outside P . Now, whatever
the distance between the roots of P and Q, the distance at the mid-
points, which are on the same isocline is much bigger, and there is room
for an active seed A3 in between A1 and A2: see, below, the table of
distances between the border of a tree and the closest outside seed on
an isocline 0: 2, 36 or 269. This would again contradict our assumption
on T1 and T2.

And so, we may assume that ℓ is the right-hand side leg of a trilateral
of the generation n+2 generated by the mid-line of P and inside P . Is
this possible?

The mid-line of P is λ. Let ν be its closest active seed near the
right-hand side leg ℓ of P . The problem which we have to consider is
the distance between the closest seed to ℓ. We measure this distance in
the number of nodes from ℓ to the seed which are on the same isocline.
In fact, we have to consider the distance on λ and on the next isocline 0.

From the study of [11] performed with the help of a computer pro-
gramme, and taking into account the periodicity of the tiles on the
border of a tree of the mantilla, the considered distances are given by
the following table:
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(λ), 15: 2 36 269
0: 36 269 2

Also note that for the isoclines 15, these distances give the closest
seed, which is not necessarily active. Accordingly, we can see that,
whatever the distance of the closest active seed σ to the leg ℓ of the
generation n+1 on the isocline 15, the closest seed to ℓ on the isocline 0
is in between the right-hand side leg of the tree rooted at σ and ℓ. This
means that the remotest ancestor A1 of T1 is not inside the tree rooted
at σ. And so, the righ-hand side border of this tree is on the left-hand
side of the left-hand side border of T1.

This indicates that another possible leg of a higher generation be-
tween T1 and T2 could be of the generation n+2 and, precisely, in such
a case, the remotest ancestor of T1 would be the rightmost side on the
isocline 0 inside the tree rooted at σ.

Now, the distances of the closest seeds on the isocline 15 and the
next isocline 0 outisde a leg of a trilateral are given by the same table
as above. Accordingly, between δ and T1, there cannot be a leg of the
generation n+2. Higher generations are a fortiori ruled out: otherwise,
the generation n+2 would also be present.

A last point to notice is that there cannot be two legs of the gener-
ation n+1: a right-hand side one on the side of T1 and a left-hand side
one on the side of T2.

Now, the distance between legs of such opposite legs of the same
generation is increasing as we go down along the isoclines. The closest
distance is the smallest distance bewteen two active isoclines. It is not
difficult to see that it is realized by the F -sons of a Gr- and a Gℓ-centres
which belong to the same F -flower when the F -centre is a black node.
The distance is then 26. At the level of λ, the distance is much bigger
than the biggest distance 269 indicated by the above table.

Accordingly, two such legs cannot be present between T1 and T2.
And so, our claim is proved.

Next, we provide tiles to implement this mechanism and then, in the
next subsection, we check that the new mechanism does not disturb the
general construction, outlined in the previous section.

2.3 The tiles

The antenna is given a specific colour, we call it orange, and it has a
laterality: there is an right-hand side antenna, which goes to the right and a
left-hand side one, which goes to the left. Due to the colour of the antenna,
we shall often speak of the orange signal and of its laterality.

The first principle is that an antenna cannot directly be in contact with
the green signal. And so the green signal and the orange one are always
separated by the leg of a trilateral, more precisely, they both occur at the
mid-point of a leg. The other principle is that the antenna is stopped, at
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one end by a mid-point of a triangle and, at the opposite end, by an antenna
of its opposite laterality.

the signals for the antennas:

Figure 9 The tiles for the antennas:
Number them by rows and columns, in 1..3 for rows and 1..6 for columns.
In the row 3, we have the ends of the antennas: the join tile, 1−1 and the mid-point
of a triangle, 3 − 5 and 3 − 6.
In the row 1, we have the tile to jump over an eldest phantom.
In the row 3, we have the tiles to cross legs of bigger trilaterals. Note that not any
combination of lateralities for the leg and for the antenna are permitted. Note that
the two tiles for the vertices are not represented, as this is easy.

Now, if the antenna meets a leg at a mid-point, and there is necessarily
a green signal on the other side of the leg, then the orange signal climbs up
along the leg.

The tiles are dispatched by figure 9.

2.4 Checking the correctness

We have now to check that the set of tiles given by figure 9 force the above
specifications given to the antennas. Note that the tiles are in fact meta-

tiles. We represented the colour by a variable colour. Note also that in the
tiles of the row 1, we have mid-points of phantoms, necessarily. However,
in the row 2, tiles 2-5 and 2-6 belong to legs of phantoms, while tiles 2-7
and 2-8 belong to legs of triangles. In both cases, it may be either the first
half or the second half of a leg. The tiles 2-1, 2-2, 2-3 and 2-4 concern
phantoms only and, as the other tiles of the row, of any colour and for any
half-leg. Also, the two meta-tiles for the vertices are not represented. One is
endowed with the signal to the right, the other with the signal to the right.
Note that a vertex cannot join antennas of different lateralities. Note that
the vertex of a phantom with no orange signal over it is also available.
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It is not difficult to check that the antennas can be constructed by the
considered tiles. We shall focus on the converse: nothing else can be obtained
from the tiles.

First, we check that inside an eldest phantom, the phantoms are crossed
at their mid-line by the green signal only. This is obtained by the combina-
tion of lateralities and the fact that both first halves of the legs of a phantom
are covered by a signal with the same laterality. Also note that there is a
single join-tile for horizontal parts of antennas of opposite laterality. This
join-tile prevents to change of laterality inside a phantom. Accordingly, if
an orange signal would cover a non eldest phantom, there would be a con-
tradiction at one mid-point of a the phantom of the next generation: a
contradiction on the left-hand side mid-point with an orange signal to the
right and on the right-hand side mid-point with an orange signal to the left.

The same argument explains that the present construction does not pre-
vent the mechanism of the green signal to detect the mid-line of a triangle.
Indeed, if instead of the tile 3-5 a tile 2-8 is used, as the join tile 3-1 cannot
be used inside the triangle, the orange signal, after jumping other the eldest
phantoms inside the triangle could not match the meeting with the other
leg of the triangle. We have a symmetrical argument if the tile 2-7 is used
in place of the tile 3-6. And so, the unique solution is to use the tiles 3-5
and 3-6.

Also, as the orange signal cannot directly meet with a green one, on a
given mid-line, we have either the green signal or an orange one. We have a
green signal inside a triangle and inside the phantoms whose mid-line is the
considered isocline.

We also note that the tiles of the row 2 cannot be used in place of
those of the row 1 and that the tiles of the row 2 must be used with legs
of trilaterals of a bigger generation than that of the triangles emitting the
crossing signal. Note that the tiles 2-1, 2-2, 2-3 and 2-4 are used by triangles
contained in an eldest phantom P . As the mid-lines of these triangles is not
the mid-line of P , the signal crosses the leg which bears the orange signal
covering P . Note that the opposite legs of P are crossed by signals of the
same laterality as the leg and that due to the unique join tile, there must be
a triangle inside the considered phantom. Also note that for the phantoms
of the generation 0 this brings in no contradiction as they do not contain
triangles.

At last, the start of a jump at a mid-point cannot be confused by a
crossing. For instance, if the antenna to the righ from T goes to far and
meets a left-hand side leg on the right-hand side of the point D defined at
sub-section 2.2, then there is a trilateral which receives a green signal which
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will meet the orange signal of the left-hand side antenna from T ′, which will
produce a contradiction. and so, the single solution is to use the joining tile
at a place of [C,D] which is outside any phantom of the considered latitude.

And so, this proves that the antenna mechanism is forced by the set of
tiles of figure 9.

Note that in the case of the butterfly model, see [9, 11], the mechanism
of the antenna forces the green signal to run over the whole isocline which
is the mid-point of the latitude which contains no triangle. Indeed, the
laterality constraints of the tiles of the second row prevent an orange signal
to run at infinity.

With this, we completed the proof of theorem 1.

Conclusion

The first consequence is that we need a bigger number of tiles than what is
announced in [9, 11]. Indeed, the orange signals entails an increase of the
number of vertices, of mid-points, of corners, of crossings with various legs.
Signals of bases are also changed by the completion of the construction. Note
that corners behave as crossing legs. Also note that the signal particularly
addresses isoclines 5 and mainly 15. A detailed counting will be given in
a forthcoming paper making the synthesis of [9, 11] and the present paper.
However, a rough estimate shows that the number of prototiles should be
now around 21,000 tiles. But, the number of meta-tiles, the variable tiles
indicating the computation signs which depend on the simulated Turing
machine, is not changed by the orange signal.

It is interesting to notice the rôle played by the laterality in the whole
proof of theorem 1. The laterality is not used exactly in the same way in
the antenna mechanism and in the mechanism of detecting the green line,
the bases and the free rows. However, the same difference is used together
with the possibility to connect opposite lateralities in a single way. May be
a closer analysis of this mechanism could be used to reduce the number of
signals, hence to reduce the number of tiles.
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