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Abstract

In this paper, we prove that a generalized origin-constrained prob-
lem of tiling the hyperbolic plane with ¢ la Wang tiles is undecidable.
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1 Introduction

The question, whether it is possible to tile the plane with copies of a fixed
set of tiles was raised by Wang, [30] in the late 50’s of the previous century.
Wang solved the partial problem which consists in fixing an initial finite
set, of tiles: indeed, fixing one tile is enough to entail the undecidability of
the problem. The general case, when no initial tile is fixed, was proved by
Berger in 1964, [1]. Both Wang’s and Berger’s proofs deal with the problem
in the Euclidean plane. In 1971, Robinson found an alternative proof of the
undecidability of the general problem in the Euclidean plane, see [28]. In this
1971 paper, he raises the question of the general problem for the hyperbolic
plane. Seven years later, in 1978, he proved that in the hyperbolic plane, the
partial problem is undecidable, see [29]. Up to now, the general problem is
still open in the case of the hyperbolic plane.

In this report, we give the proof that a generalized origin-constrained
problem is also undecidable in the case of the hyperbolic plane. It is inter-
esting to note that our proof has several similarities with the proofs of Berger
and Robinson, although it differs in its main character and in the result. The
main difference is the presentation. In this report we consider that the tiling
process is an algorithmic process which evolves in time.



We start from the initial idea of Berger’s proof. It consists in simulating
infinitely many computations of a Turing machine, indeed of the same Turing
machine starting from an empty tape from which the set of prototiles is
derived. The computations go as far as they can. If the Turing machine
halts, the computations of the tiling which arrive until the halting state are
stuck by this state and it is no more possible to tile. If the Turing machine
does not halt, in general, the simulations are stopped by the limitations
imposed on the tiling. But Berger, and after him Robinson, proved that
among this infinity of computations in the case of a non-halting situation,
either at least one of them can be performed without being interrupted, or
there are arbitrary long computations. And, accordingly the plane can be
tiled. And so, tiling the plane is possible if and only if the Turing machine
does not stop. And this proves the undecidability of the problem.

Analysing the proof, we can see that the restricted amount of space in the
Euclidean plane forces to find a way to generate infinitely many bounded do-
mains whose size is exponentially increasing. The exponential size is needed
to overcome the meeting problem. It is also needed from Wang’s remarks
of the 50’s: if tilings of the plane are necessarily periodic, the general tiling
problem is decidable. And, historically, Berger’s proof had, as a side-product,
the construction of a non-periodic tiling. This was not the goal of Berger’s
paper, but this was entailed by Wang’s remark. As exponential signals are
rather easily generated in the Euclidean plane, this was skillfully exploited by
Berger. Also, the exponential growth guarantees the existence of at least an
infinite sequence of increasingly longer and longer computations. This is per-
formed in different very tricky ways connected with the structure of groups
of symmetries of the square. On the other hand, the group structure makes it
immediate to produce a situation where there is no privileged origin. At this
point, it is important to focus on the fact that the constructions performed
both by Berger and by Robinson in their respective proofs make a huge use
of similarity. In his 1978 paper, speaking of the problem in the hyperbolic
plane, Robinson remarks that We cannot imitate Penrose construction, since
stmilarity s tmpossible in the hyperbolic plane. Indeed, this remark extends
to Berger’s proof and also to 1971 Robinson’s proof.

The situation in the hyperbolic plane is very different than in the Eu-
clidean plane, quite the opposite. Already Robinson’s proof of the partial
case witnesses at the key point: in the hyperbolic plane orientation and local-
isation are very difficult. This is what is expressed by Robinson in his 1978
paper: The group of motions in the hyperbolic plane does not have a uniquely



defined subgroup which plays the same role as the group of translations in the
Euclidean plane. Indeed, the group of direct motions of the hyperbolic plane
is simple which explains the impossibility of finding a nice subgroup as indi-
cated by Robinson. Still in this 1978 paper, Robinson makes an interesting
remark, asking whether the undecidability and nonperiodicity results about
tilings of the Fuclidean plane have analogs for the hyperbolic plane: It is no
longer clear that the two problems are related. And it can be noted that the
nonperiodicity problem for tilings of the hyperbolic plane has drawn more
attention than the undecidability problem, see for instance [22, 7] for works
in this direction. Here, our construction confirms Robinson’s question as
among continuously many realizations of the tiling which are possible when
the simulated Turing machine does not halt, there are countably many of
them which are periodic.

From the tools I devised to locate cells of a cellular automaton imple-
mented in the hyperbolic plane, see [15, 16] for more complete references, it
came to me that perhaps, this could provide us with a new angle to tackle the
problem. Unfortunately, in my preliminary tools, the root of the tree which
is used to locate cell plays a key role. It is even reinforced in other papers,
[3]. Yet, these tools had the advantage to give much clear proofs for the
partial case than Robinson’s. I have several scenarios, although I published
none of them on the subject. As a compensation, one of them is presented
in this report as it is used in the proof of the main theorem. A bit later,
in [18], I succeeded to give a representation of two tilings, {5,4} and {7, 3}
where there is no more a central root. However, in this representation, there
are still many roots which are gathered in what could be called a highway.
It is not still the requirement of the general problem.

It is worth noticing an interesting point. As it can easily be noted in
Berger’s and Robinson’s proofs, if the first tile can be chosen at random, it
can be a tile bearing the computation signs of a Turing machine. But as it
may turn out that this tile can never be used, it cannot be placed. And this
cannot be accepted. Consequently, the organisation of the tiling must force
any computation to be started by a first tile corresponding to the starting of
the Turing computation, which is the case in both Berger’s and Robinson’s
proofs. And so, the first tile cannot be taken at random.

Is it not a contradiction with the statement of the general problem which
requires that there is no condition on the set of prototiles? Indeed, there is
no contradiction as we can see by the following argument.

Let us consider a finite set 7" of prototiles. The origin-constrained problem
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means that we fix a tile ¢ of T" and we ask whether, a being placed, it is
possible to complete the tiling to the whole plane with copies of elements
of T'. We shall express this by writing that there is a solution to the problem
(T, a). In the general problem, a is not fixed, and so, a solution for 7" depends
on T only. The connection between the two problems is the following. If
there is a solution for 7', taking at random a tile a in the tiling, this solution
immediately gives a solution for (7, a). And so, there is a solution for 7 if and
only if there is a in T for which there is a solution for (7', a). And so, when
we look at the existence of a solution, it is possible to choose to start the
construction from a fixed in advance tile. Now, when we try to see whether
there is no solution, then we must try all problems (7, a) with @ running
over T'. This means that we have to start from any tile. But as we wish to
prove that there is no tiling, it is not needed to try to tile the whole plane.
Starting from an arbitrary tile, if, continuing the tiling we can reach a tile
from which we know that we can go on until we arrive at an impossibility, we
are done. And if we have this property, we can always start from an origin,
both for the positive and the negative tests. Berger’s and Robinson’s proof
have this property. The skeleton fills up the plane and it guarantees that,
starting from any point, an origin is eventually reached. And so, in the case
when the Turing machine halts, starting from any arbitrary tile we can reach
an origin and from this one we can find possibly another one from which we
can process the whole computation of the Turing machine until we reach the
halting state which blocks the construction of the tiling.

This point is not written in Berger’s and Robinson’s proofs. It was prob-
ably folklore at that time.

This forcing property is what is missing in the proof of this paper to solve
the general problem. Our set of origins is not enough dense in the hyperbolic
plane. However, in this proof, this set of origin has interesting properties,
which are also shared by the analogous set in Berger’s and Robinson’s proof.
The properties are the following ones:

(1) There is a positive number k such that in the ball of radius k around
any origin w, there are at least two origins w1 and wy with w, wi and we
not on the same line.

(17) There are infinitely many rays each one containing infinitely many
oTigines.

Accordingly, in the proof of this report, the set of origins satisfies a density
property but with respect to itself. Of course, this is not enough. This is why



we call the problem obtained by requiring these properties a generalized
origin-constrained problem of tiling the plane.

Note, that in Berger’s and Robinson’s proof, it is stressed that the copies
of tiles of the initial set must be transported to their final place by using only
shifts leaving the tiling invariant. In the hyperbolic case, this restriction
cannot be observed: the shifts which leave the tiling invariant also generate
the rotations which leave it invariant. However, in our construction, we forbid
the possibility to take the reflection of a tile of the initial set.

The paper is divided in sections as follows. The second section recalls
the prerequisites to follow the proof. In particular, we remind the reader
what is needed from hyperbolic geometry. Then we shortly remind the basic
tools used to deal with regular tilings of the hyperbolic plane, generated
by tessellation. In the third section, we deal with the way to represent the
tiling {7,3} which leads to the solution, starting from flowers, defined as
balls in {7, 3} of discrete radius 1 and continuing with the mantilla, a slight
modification of the flowers creating a tiling in the spirit of the carpets which
I introduced in [18]. Then, in section 4, we indicate a solution to the partial
problem, and in section 5, we deal with the generalized origin-constrained
problem. We use the partial solution of section 4 and also, at this occasion,
we clarify a point about the simulation of Turing machines. In section 6, we
give another application of the method, showing after [9, 24] that there is a
finite set of tiles for which there is a non-recursive way to tile the hyperbolic
plane but no recursive way to do so.

2 Tilings of the hyperbolic plane

2.1 Hyperbolic geometry

In order to simplify the approach for the reader, we shall present a model of
the hyperbolic plane and simply refer to the literature for a more abstract,
purely axiomatic exposition, see [23, 10] for instance.

As it is well known, hyperbolic geometry appeared in the first half of
the 19" century, in the last attempts to prove the famous parallel axiom
of Euclid’s Flements from the remaining axioms. Hyperbolic geometry was
yielded as a consequence of the repeated failure of such attempts. Indepen-
dently, Lobachevsky and Bolyai discovered a new geometry by assuming that
in the plane, from a point out of a given line, there are at least two lines which



are parallel to the given line. Later, during the 19" century, Beltrami found
out the first models of the new geometry. After him, with Klein, Poincaré,
Minkowski and others, a lot of models were discovered, some of them giving
rise to the geometric material being used by the theory of the special relativ-
ity. The constructions of the models, all belonging to Euclidean geometry,
proved by themselves that the new axioms bring in no contradiction with the
other ones. Hyperbolic geometry is not less sound than FEuclidean geometry
is. It is also no more sound, in so far as much later, models of the Euclidean
plane were discovered in the hyperbolic plane.

Among these models, Poincaré’s models met with great success because
in these models, hyperbolic angles between lines coincide with the Fuclidean
angles of their supports. In this paper, we take Poincaré’s disc as a model of
the hyperbolic plane.

2.1.1 Lines of the hyperbolic plane and angles

In Poincaré’s disc model, the hyperbolic plane is the set of points which lie
in the open unit disc of the Euclidean plane.

The lines of the hyperbolic plane in Poincaré’s disc model are the trace of
either diametral lines or circles which are orthogonal to the unit circle. We
say that the considered lines or circles support the hyperbolic line, h-line
for short, and sometimes simply line when there is no ambiguity.

Poincaré’s unit disc model of the hyperbolic plane makes an intensive
use of some properties of the Euclidean geometry of circles, see [12] for an
elementary presentation of the properties which are needed for our paper.

Consider the points of the unit circle as points at infinity for the hy-
perbolic plane: it is easy to see that an h-line defines two points at infinity
by the intersection of its Euclidean support with the unit circle. They are
called points at infinity of the h-line. The following easily proved properties
will often be used: any h-line has exactly two points at infinity; two points
at infinity define a unique h-line passing through them; a point at infinity
and a point in the hyperbolic plane uniquely define an h-line.

The angle between two h-lines are defined as the Euclidean angle between
the tangents to their support. This is one reason for choosing this model:
hyperbolic angles between h-lines are, in a natural way, the Euclidean an-
gle between the corresponding supports. In particular, orthogonal circles
support perpendicular h-lines.
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Figure 1 The lines p and q are parallel to the line £, with points at infinity P
and Q. The h-line m is non-secant with £.

In the Euclidean plane, two lines are parallel if and only if they do not
intersect. If the points at infinity are added to the Euclidean plane, parallel
lines are characterized as the lines passing through the same point at infinity.
Hence, as for lines, to have a common point at infinity and not to intersect
is the same property in the Euclidean plane. This is not the case in the
hyperbolic plane, where two h-lines may not intersect and have no common
point at infinity: we say that such h-lines are non-secant. We shall call
parallel, h-lines which have a common point at infinity. So, considering the
situation illustrated by Figure 1 above, there are exactly two h-lines parallel
to a given h-line which pass through a point not lying on the latter line.
Also, there are infinitely many ones which pass through the point but are
non-secant with the given h-line. This is easily checked in Poincaré’s disc
model, see Figure 1. Some authors call hyperparallel or ultraparallel
lines which we call non-secant.

Another aspect of the parallel axiom lies in the sum of interior angles
at the vertices of a polygon. In the Euclidean plane, the sum of angles of
any triangle is exactly 7. In the hyperbolic plane, this is no more true: the



sum of the angles of a triangle is always less than 7. The difference from
7 is, by definition, the area of the triangle in the hyperbolic plane. Indeed,
one can see that the difference of the sum of the angles of a triangle from
7 has the additive property of a measure on the set of all triangles. As a
consequence, there is no rectangle in the hyperbolic plane. Consequently two
non-secant lines, say £ and m, have, at most, one common perpendicular. It
can be proved that this is the case: two non-secant lines of the hyperbolic
plane have exactly one common perpendicular. But parallel h-lines have no
common perpendicular.

In the Euclidean geometry, it is well known that if we fix three positive
real number «,  and vy with a+3+7y = m, there are infinitely many trian-
gles which have these numbers as the measure of their interior angles. This
property of the Euclidean plane defines the notion of similarity.

Another consequence of the non-validity of Euclid’s axiom on parallels in
the hyperbolic plane is that there is no notion of similarity in that plane: if
o, B,y are positive real numbers such that a+p+vy < 7w, £ and m are h-lines
intersecting in A with angle o, there are exactly two triangles ABC' such that
B e t, C € m and BC makes angle 3 in B with £ and angle v in C' with m.
Each of those triangles is determined by the side of ¢ with respect to A in
which B is placed.

2.1.2 Reflections in a A-line

Any h-line, say /¢, defines a reflection in this line being denoted by p,. Let Q2
be the center of the Euclidean support of £, and let be R its radius. Two
points M and M’ are symmetric with respect to £ if and only if Q, M and
M’ belong to the same Euclidean line and if QM.QM' = R?. Moreover, M
and M’ do not lie in the same connected component of the complement of £
in the unit disk. We also say that M’ is obtained from M by the reflection
in /. It is clear that M is obtained from M’ by the same reflection.

All the transformations of the hyperbolic plane which we shall later con-
sider are reflections or constructed by reflections.

By definition, an isometry of the hyperbolic plane is a finite product of
reflections. Two segments AB and C'D are called equal if and only if there
is an isometry transforming AB into CD.

It is proved that finite products of reflections can be characterized as
either a single reflection or the product of two reflections or the product



of three reflections. In our sequel, we will mainly be interested by single
reflections or products of two reflections. The set which contains the identity
and the product of two reflections constitutes a group which is called the
group of displacements.

At this point, we can compare reflections in a h-line with symmetries with
respect to a line in the Euclidean plane. These respective transformations
share many properties on the objects on which they operate. However, there
is a very deep difference between the isometries of the Euclidean plane and
those of the hyperbolic plane: while in the first case, the group of displace-
ments possesses non trivial normal subgroups, in the second case, this is no
more the case: the group is simple.

The product of two reflections with respect to lines £ and m is a way to
focus on this difference. In the Euclidean case, according to whether £ and m
do intersect or are parallel, the product of the two corresponding symmetries
is a rotation around the point of intersection of ¢ and m, or a shift in the
direction perpendicular to both £ and m. In the hyperbolic case, if h-lines
¢ and m intersect in a point A, the product of the corresponding reflections
is again called a rotation around A. If £ and m do not intersect, there are
two cases: either £ and m intersect at infinity, or they do not intersect at all.
This gives rise to different cases of shifts. The first one is called an ideal
rotation, it is a kind of degenerated rotation, and the second one is called
a hyperbolic shift or shift along n, the common perpendicular to ¢ and
m. A shift is characterised by the image P’ of any point P on n. We shall
say simply shift when the explicit indication of the common perpendicular
is not needed.

For any couple of two h-lines ¢ and m, there is an h-line n such that ¢
and m are exchanged in the reflection in n. In the case when ¢ and m are
non-secant, n is the perpendicular bisector of the segment which joins the
intersections of £ and m with their common perpendicular.

For more information on hyperbolic geometry, we refer the reader to
(23, 27].

2.2 Tilings of the hyperbolic plane

In the paper, we only consider tilings which are obtained by the following
process: we consider a regular polygon P and we replicate P by reflection in
its sides and, recursively, of the images in their sides. We say that P tiles
the plane if two distinct images completely coincide or have disjoint interiors
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and if the union of the images contains the whole plane. In this case, we say
that P tiles the plane by tessellation. In the rest of this paper, as we
only consider tilings of this kind, we shall simply say that P tiles the plane.

In the Euclidean plane, there are only three tilings by tessellation from
a regular polygon: the square grid, the hexagonal grid and the triangular
grid. They are based on the square, the regular hexagon and the equilateral
triangle, respectively.

In the hyperbolic plane, there are infinitely many such tilings. This prop-
erty is a result of the famous Poincaré’s theorem, stated and proved by
Poincaré at the end of the 19'" century. The theorem is based on the method
of triangulation: if a tiling by tessellation exists, by subdividing the initial
polygon on equal triangles sharing a common vertex at the centre of the
polygon, we obtain a tiling by tessellation from this triangle. The converse
is also true and Poincaré’s theorem states a nice property for a triangle to
tile the plane by tessellation:

We can now state the theorem:

Poincaré’s Theorem, ([26]) — Any triangle with interior angles 7 /€, 7 /m, 7 /n
such that

1 1 1

;T <1
generates a unique tiling by tessellation.

As an immediate corollary of the theorem, tilings based on any regular

2 1
polygon with p sides and interior angle il do exist, provided that — + — < 7

Such a polygon and the corresponding tiling are denoted by {p,pq}. Below
we show the simplest tilings of this kind with p = 5 and ¢ = 4 displayed by
Figure 2. We call this tiling the pentagrid.

Another example, which we shall study in full details is the tiling {7, 3}
where p = 7 and ¢ = 3. The basic tile is a regular heptagon whose interior

2
angle is ?W We call this tiling the ternary heptagrid.
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Figure 2 A simple tessellation with right-angled regular pentagons.

2.3 The splitting method

The splitting method was first defined in [13, 14]. The definition runs as
follows:

Definition 1 Let Sy, ..., Sk be finitely many parts of some geometric metric
space X which are supposed to be closed with non-empty interior, unbounded
and simply connected. Let Py, ..., P, with h < k be finitely many closed
simply connected bounded sets. Say that the S;’s and Py’s constitute a basis
of splitting if and only if:

(1) X splits into finitely many copies of Sy,

(17) any S; splits into one copy of some Py, the leading tile of S;, and

finitely many copies of S;’s,
where copy means an isometric image, and where, in condition (i1), the
copies may be of different S;’s, S; possibly included.

As usual, it is assumed that the interiors of the copies of P, and the copies
of the S;’s are pairwise disjoint.
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The set Sy 1s called the head of the basis and the P;’s are called the
generating tiles and the S;’s are called the regions of the splitting.

Say that a tiling of X is combinatoric if X has a basis of splitting and
if the spanning tree of the splitting yields exactly the restriction of the tiling
to Sy, the head of the basis.

Figure 3 Another tessellation: with regular heptagons where the interior angle
27

Chre

Consider a basis of splitting of X, if any. We recursively define a tree A
which is associated with the basis as follows. The root of A is the leading
tile of Sy. Consider the region .S; associated to the considered node, say v.
Splitting S; according to condition (i7) of the above definition, we take the
leading tiles of the regions which are obtained as the sons of v. This defines
an infinite tree A with finite branching which we call the spanning tree of
the splitting, where splitting refers to the basis of splitting with its regions
So, - - -, Sk and its generating tiles Py, ..., Pj.

The fact that the hyperbolic plane is able to embed infinite trees is not
new. This is already known from Gromov’s works, see [5] for instance, which
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points at the tree structure as the key structure of a hyperbolic space. How-
ever, before [19], which exhibits the tree in a natural way, no application of
that idea was done.

In [12], for instance, we proved that the pentagrid is combinatoric. We
shall see in the next sub-section another example of a combinatoric tiling:
the ternary heptagrid to which we shall apply the method.

Now, let us turn to the algebraic consequences of the definition.

When a tiling is combinatoric, we represent the splitting of the regions of
the basis by an incidence matrix which we call the matrix of the splitting.
Each row 7 is associated to a region S;_; and on each column j, we have how
many copies of S;_; enter the splitting of S;_; according to the condition (%)
of the definition. Now, when we have a square matrix M, we can attach to
it its characteristic polynomial P. When M is the matrix of a splitting of a
combinatorial tiling, we call polynomial of the splitting the just defined
polynomial P possibly divided by the greatest power of X which it contains.

Let us see the connection of this polynomial with the tiling. Consider
the spanning tree A of the head of the basis and number its nodes, level by
level and, on each level, from the left to the right. Now, call u,, the number
of nodes of A which are at level n. Then, the sequence of u,’s satisfies the
linear recurrence relation associated with the polynomial of the splitting.
Moreover, it turns out that in all cases which we studied, the polynomial
of the splitting has a positive greatest real root S with 8 > 1. Then, it is
possible to represent the positive numbers in the basis of the sequence u,

which we just defined. It is known, see [6, 11], that any positive number n
k

can be written as n = ) ajug, where o € {0..b} with b = |3]. In general,
this representation is nét lunique, but it can be made unique by choosing the
maximal representation with respect to the lexicographic order on {0..b}*.
We call coordinate of node v the maximal representation of the number
attached to it in basis {u,},>0. We call language of the splitting the
language of the coordinates of the nodes of the spanning tree of the splitting.

Now, many tilings of the hyperbolic plane turn out to be combinatoric
with a regular language of the splitting. There are detailed proofs for tilings
{p,4} and {p,3}. See [20] and [4] for, respectively {p,4} and {p,3}. In [4],
an interesting connection is established between both families of tilings: the
spanning trees of the splitting of {p,4} and {p+2,3} are the same. There
are also combinatoric tilings for which the language of the splitting is not
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regular: the case of equilateral triangles, see [14], a tiling of the hyperbolic
3D space, see [21], and a tiling of the hyperbolic 4D space, see[17].

2.4 The tiling {7,3}

In this section, we study the ternary heptagrid, a representation of which we
gave by Figure 3, above. In this figure, we represent the tiling starting from
any tile whose geometrical centre is put on the origin of Poincaré’s disc, O.

2.4.1 The splitting

As we can see on Figure 5, we can split the hyperbolic plane into eight pieces:
a heptagon and seven copies of the region which is displayed in the left-hand
part of Figure 6 which we call 5.

Call S; the regions which is displayed on the right-hand side of Figure 6.

2
Due to the angle ?W, regions Sy and S; cannot be delimited by the lines

which support the edges of a heptagon.

Here, in order to define these regions precisely, we introduce the following
device, see also [3, 18]: we consider the lines of the mid-points of the sides
of the heptagons which are defined by the tiling. More precisely, we take
the lines which join the mid-points of two adjacent sides of the heptagon.
Elementary considerations of hyperbolic geometry show that the mid-points
of the heptagon on the ternary heptagrid lie on appropriate lines, see Figure 4.
As we shall intensively use such lines in our sequel, we pay some attention
to their construction.

Let o denote the common sides of tiles 7y and 7;. It is clear that 7; is the
image of Ty by the reflection in o. The bisector 3 of ¢ is an axis of reflection
which leaves tiles 7y and 7; both invariant. It is not difficult to see that C
is the image of A under the reflection in 3 followed by the reflection in o.
Consequently, the angle of AB with o is equal to the angle of BC with o
and so, points A, B and C lie on the same line. Such a line is called line of
the mid-points. Line AD is also another line of the mid-points.

Now, denote by S, the set of tiles which are centered inside the angle
delimited by the two rays AC' and AD in Figure 4.The angle is defined by
two rays, each one being supported by a line of the mid-points in such a
way that the bisector of the angle is a side o of the ternary heptagrid, and
the vertex of the angle is the middle of 0. Above, Figure 5 illustrates the
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definition of Sj.

Figure 5 shows us that IH? splits into a tile 75 and seven copies of S;.
Each copy has a leading tile which has a common side with the central tile
To.

Next, in Figure 6, we also see the illustration of another region, S;, which
is also defined by lines of the mid-points. As indicated by Figure 6, S; is
defined by three lines: two lines of the mid-points ¢; and ¢, and a side o of
the heptagrid which is supported by the common perpendicular of lines ¢;
and /5. Moreover, ¢; and ¢ pass through the mid-points of the sides of a
tile which are adjacent to o. Call strip S(¢1,¢3,0) one of the two regions
which are defined as the intersection of three closed half-planes defined by
these lines which contain both ¢; and /. Now, we define S; as the union of
those tiles of the heptagrid which are centered in a strip S(¢y, ¢, o), where
l1, €5 and o are as just described.

Figure 4 Lines of mid-points defining a copy of Sp.

Then, Figure 7 gives a closer look on copies of, respectively, Sy and Sy,
and Figure 7 shows how we can assemble copies of these regions in order to
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define their splitting. At last, Figure 8 illustrates the proof that the splitting

is indeed what is suggested by Figure 7.
The proof of the correctness of the splitting is given by the following
arguments which are summarized by Figure 8.

Figure 5 IH? splits into a tile and seven copies of Sp.

We can see that Sy can be split into a tile and two copies of Sy itself
and one copy of S;. This is proved as follows. Let 7 be the leading tile of
region Sy. There is a single vertex A of 7 such that the bisector of the angle
in A which is interior to 7 is perpendicular to /5. Let 7; be the tile which is
the reflection of 7 in the side of 7 which is also perpendicular to #5: there is
a unique side s1 of 7 with this property. Let d; be the image of § under the
reflection in s;. We note that /5 is the common perpendicular of § and ¢;.
Let o be the shift along ¢y which transforms ¢ into d;, see Figure 8. Note
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that 7, = o(7) and that also, §; = o(d). Shift o transforms S, into a copy

of it with 7 as its leading tile. Let us denote by Sj this copy of S;. It is

defined by £y which is invariant under o and by m; = o(¢;), see Figure 8.
Let C' be the centre of 7. It is clear that a rotation p around C with angle

2
‘T transforms S; into another copy of Sy with leading tile 7, = p(7;). Call

S2 this new copy of Sp. It is defined by m; as we have also that m; = p(s),
and by mgy = p(my). The same rotation makes it clear that 7, is obtained

from 7 by a shift along a line of the mid-points of 7 which makes an angle of

2T 1

- with /5. Indeed, this new shift is p,o,p~" and it also transforms ¢; into

mo. Note that 75 is also the image of 7 under the reflection in sy = p(s1)
which is the side of 7 which is shared by 7.

Figure 6 Lines of the mid-points defining a copy of Sy and a copy of Si.

Again, apply p to Sj. We get this time another copy of Sy, say S§ with
leading tile 73 and delimited by my = p(m;) and ms = p(mz). We can also
see that 73 is the image of 7 under the reflection in s3 = p(sy). Side s3
belongs to both 7 and 3.
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Now, repeat with ¢; the argument we provided with /5. This defines
a shift which transforms 7 into 73 and which transforms /5 into n;. Now,
we can see that s3 is the common perpendicular of /; and my: we obtain
s3 L moy from ¢y L s; by p?, and we get that s3 L ¢; by construction of ¢;.
It is not difficult to see that what remains from S§ when removing S? is a
strip, namely S(¢1, mg, s3), which is a copy of S;. All these properties are
illustrated by Figure 8.

At last, as m3, mo and m; are defined from /5 by successive applications
of p and as they successively define three copies of Sy, these copies do not
overlap, 7.e. the intersection of their interiors is empty.

Figure 7 also illustrates the splitting of Sy. Now, from what we have
established and from the fact that a strip is obtained by removing a copy of
Sy from Sy, we obtain that a strip itself splits into a tile, a copy of Sy and a
copy of S;.

This also can be seen on Figure 8: note that lines n; and ¢, define a strip
which splits into 7, the tile, S, a copy of Sy, and S3\S§ which is a copy of
Sy as it is S(ny, my, Sg).

From these remarks, we easily obtain:

Theorem 1 (see [4, 18]) — The ternary heptagrid is a combinatoric tiling
and the language of its splitting is reqular.

We refer the reader to [4, 18] for the details of the proof which are here
omitted.

We note that for tiling {7, 3}, we can make use of the same Fibonacci tree
as for the pentagrid, an important property found out in [12]. Accordingly,
the same system of coordinates as for the pentagrid, see [12], can be used to
locate the tiles of the heptagrid.

Above, Figure 9 indicates what we have to do in order to obtain the
dual graph: on the figure, the edges which are added in order to get the
dual graph of the pentagrid are indicated by red dotted arcs. The additional
edges required for the heptagrid are indicated by blue dotted arcs in the same
figure. These new edges of the graph correspond to the connections of a node
with its immediate neighbour which are on the same level of the tree.

If we give number 7 to the side of the tile which is shared by its father
and then if we go on the numbering modulo 7 turning counter clockwise, we

19



Figure 7 The splitting of Sy for tiling {7,3}.

get that sides 2 and 6 in the case of a black node and sides 1 and 6 in the
case of a white node are shared by another node on the same level of the
tree.

This rule also holds for the nodes which are on the border of the tree: the
corresponding neighbours belong to the next tree. On the left-hand border
where we have black nodes, side 2 is shared by the white node which is on
the right-hand border of the next tree, on the same level. Side 1 is shared by
the father of this white node which is also a white node on the right-hand
border of the next tree, but on the previous level. From this, we deduce that
for a white node on the right-hand border of the tree, side 6 is shared by the
node which is on the left-hand border on the next tree on the same level.
Note that side 6 is shared by the left-hand son of this black node which is
also on the left-hand border of the next tree, but on the next level.

3 The flowers and the mantilla
From now on, we are definitely in the tiling {7,3}. Flowers, as we shall define
them soon, can be viewed as a grouping of tiles in super-tiles from which we

define a new tiling of the hyperbolic plane.

20



[cNeoNoNaoN el
POOORrROPRr

1
0
0
0
0
1
0

Figure 9 Restoring the dual graph of the ternary heptagrid from its Fibonacci
tree.
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3.1 The flowers

Remind that a ball is the set of tiles which are within a fixed distance from a
fixed tile which we call its centre, where the distance of a tile to this centre
is the number of tiles constituting the shortest path between the tile and the
centre, the centre not being taken into account. The distance which defines
the ball is called its radius. In what follows, we denote a ball of radius n
by B,. But as we shall be very often concerned by balls of radius 1 only, we
give them a special name, we call them flowers.

We proved in our papers, and this will be published in a book to appear,
that flowers tile the hyperbolic plane.

But here, we shall use another object in which we partially merge flowers.
This will give rise to another way of tiling the ternary heptagrid which will
be at the basis of our construction.

The idea of merging the flowers comes from the following consideration.
Robinson’s proof of the undecidability of tiling the Euclidean plane is based
upon a simple tiling consisting of two tiles represented by Figure 10, below.

Figure 10 Robinson’s basic tiles for the undecidability of the tiling problem in
the Euclidean case.

In the Euclidean case, this fixes the tiling immediately and we refer the
reader to Robinson’s paper [28] to see the very nice consequences deduced
from these simple tiles.

If we try to apply the same idea to the ternary heptagrid, we get the tiles
of Figure 11.

It is not very difficult to see that this cannot work. Indeed, tile a requires
seven copies of b around it and once we put three tiles a around a tile b, we
arrive to an impossibility to go on.
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Figure 11 A ’literal’ translation of Robinson’s basic tiles to the situation of the
ternary heptagrid.

However, it is not very difficult to change a bit the tile b to make things
to work much better, perfectly well as will be seen later. Consider the new
couple of tiles given by Figure 12.

This time we can see that we always must put seven copies of tile ¢ around
a tile a and that we need three copies of a around a tile c. Also, we can see
that three tiles ¢ abut around their untouched vertex.

What we shall call later the mantilla and the set of tiles which we shall
later derive to represent it can be seen as a rigourous proof that there are
tilings of the hyperbolic plane based only on tiles ¢ and ¢ of Figure 12.
However, by contrast with the Euclidean case, we have here infinitely many
such tilings, even continuously many of them.

12O

Figure 12 An adaptation of Robinson’s basic tiles to the ternary heptagrid.

The seven copies of ¢ around a tile a give immediately the idea of a flower.
Also, we shall modify the representation in order to obtain strict a la Wang
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tiles. Moreover, the tiles will abut simply, only requiring that abutting edges
have the same colour.

Using the notion of flower, we introduce two kind of tiles: blank ones
which, later on will be called centres, and the others will be called the
petals. The tiles are represented by Figure 13. As can be more or less
guessed, centres correspond to tile a of Figure 12 and petals correspond to
tile ¢ of the same figure. Petals can be seen as a pedagogic version of tile c:
green and red marks indicate the edges where a petal abut with another
petal, the other sides being shared with a centre.

The basic figure of the mantilla is the flower. Later, we will re-define
the tiling in such a way that a condition will be put on the tiles: a centre
may be surrounded by petals only; it cannot abut with another centre. A
consequence of this constraint is that any petal belongs to three flowers and
so, we can view petals and centres as meshes and holes of a vast crochet,
whence the name mantilla.

It will turn out that there can be infinitely many mantillas if any. Indeed,
we shall find an algorithmic way to combine petals and centres in order to
get a tiling. We shall do this a bit later.

Figure 13 The basic two kinds of tiles, translation of tiles a and c into dominoes.

Assuming that solutions exist, let us investigate to what they look like.
Considering a centre, it is not difficult to see that it is surrounded by centres,
not immediately but at a small distance. Indeed, the first row of surrounding
tiles are petals but on the second row, centres necessarily appear. Note in
Figure 16 that the red vertex of three petals must be glued together. This will
define the red vertices of the configurations we shall study. Also, two green
dots are connected by the sides of two neighbouring petals. Accordingly, we
say that the corresponding side is green. Now, we note that red vertices
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are always at the end of a side where the other belongs to the border of a
centre. We shall say that the considered red vertex is at distance 1 from
this centre. Note that any red vertex is always at distance 1 of exactly three
distinct centres.

Lemma 1 A petal can abut at a blank edge only with a centre. Two petals
can abut either by their red-vertex and an edge of this verter or by an edge
with a green mark.

Proof of Lemma 1. If we consider a petal, it cannot abut with itself or
with another one by the blank edges. To see this point, we fix one petal
and an edge and we make the other rotate three times in order to present
all its blank edges to the chosen blank edge of the fixed petal. As we can
see in Figure 14, in two cases, this would require a tile where two adjacent
edges bear a green mark, which is impossible. In the remaining case, it would
require a tile with an edge marked by a green side and an adjacent edge with,
at the non-common vertex, a red vertex. This is also impossible.

The possibilities between two petals are indicated by Figure 15.

From Figure 15 which indicates the way of how petals can be connected
we can see that the number of centres of the second row ranges in the interval
{7..10}. Call centre ring the set of centres in the second row of tiles around
a given centre. The centre defining the centre ring is again called the centre
of the centre ring or simply centre if no confusion may arise. Then, it can be
noted that the number of elements in the centre ring is directly connected
with the number of red vertices which are at distance 1 from the centre of
the centre ring. The correspondence is given by the following formula:

Figure 14 The three ways of abutting petals along blank edges: in all cases, it is
impossible.
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#centres = #red_vertices + 7

This comes from the fact that a green side connects directly two centres, and
that a red vertex is at distance 1 of three centres and for each of these three
centres, both remaining centres belong to its centre ring. Accordingly, a red
vertex generates 2 centres of the centre ring while a green side generates 1.
Now,

#red_vertices + #green_sides =7
and so,

#centres = 2#red_vertices + #green_sides = #red_vertices + 7.

Lo o

D)

(iv) (v)

Figure 15 There are siz ways to corretly abut two petals. The three basic ones
are indicated by (i), (i1) and (#91). The others are obtained by reflection in the
vertical azis of the big heptagon. In this figue, (iv) and (v) are obtained in this
way from (4i1) and (i1) respectively.

Next, it is not very difficult to see that there cannot be tilings where all
centres have a centre ring of 7 elements or all centres have a centre ring of
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10 elements. Indeed, if a centre is surrounded by seven green sides, then
any element of its centre ring has at least two red vertices at distance 1 and
so, the corresponding centre has a centre ring with at least 9 elements. The
same remark applies also to a centre whose centre ring contains 8 elements.
And so, there cannot be tilings of this kind where centres are all centres of a
centre ring with 8 elements.

*
*

Figure 16 Flowers with, respectively, 7, 8, 9 and 10 centres in their centre ring.

It remains to see that all centres cannot have a centre ring with 10 el-
ements. Indeed, consider a centre with a centre ring of 10 elements. As a
red vertex at distance 1 of a centre defines two green sides in contact with
the centre, the 3 red vertices of such a flower are separated either by a single
green side touching the centre of the flower or by two such green sides. Now,
consider two red vertices of a centre surrounded by 10 centres which are sep-
arated by a single green vertex. This green vertex connects the centre of the
considered centre ring with another centre C. Now, from what we said, C'
has 3 consecutive green sides around itself and so, it cannot be the centre of
a centre ring of 10 elements.

I don’t know whether all centres can be surrounded by a centre ring of
9 elements. My conjecture is that this is the case, but I could not construct
such a tiling algorithmically.
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3.2 The mantilla

On the other side, we have the following:

Lemma 2 There is a tiling of {7,3} with the petals and centres such that
all flowers of the tiling have a centre ring of 9 elements or of 8 elements.
Moreover, it is possible to algorithmically construct such a tiling.

Figure 17 The flowers of the mantilla : they consist of flowers with 8 or 9
elements in their centre ring. Note the representation of F- and G-flowers for the
flowers with 9 centres.

In this proof, we distinguish between flowers with 9 elements in a centre
ring as there are two different possible patterns, see Figure 17. Indeed, the
two red vertices of the flower may be separated by one green edge or by two,
considering the shortest number between them in the centre ring. We call
F-flowers the flowers for which the two red-vertices are separated by only one
green edge. We call G-flowers the others: their red vertices are separated
by two green edges. We shall call 8-flowers the flowers with 8 elements in
their centre ring.

Proof of Lemma 2. The proof consists in showing that the new tiling can
also be generated by the splitting method. This is performed by induction.

Below, Figures 18, 19 and 20 indicate how we split F-, G- and 8-flowers.
In the case of an F-flower, we call parental petals the petals of the flower
which are between the two red vertices, considering the minimal possible
number.

In the case of a G-flower, the parental petals are also taken among the
three petals which realize the shorter path between the main two red-vertices
of the flower. The central petal of this triple is a parental petal, call it p.
The red vertex of p defines two centres which are in contact with the triple.
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By induction on the splitting, we shall show that one of these two centres
defines an 8-flower. The other non-parental petal of the G-flower is the petal
which belongs to this 8-flower.

In the case of an 8-flower, the parental petals are the two petals which
are in contact with the single red vertex.

Important convention: from now on, if not otherwise indicated, we
shall not mention green sides, only red vertices in order to make the figures
more easily readable.

Figure 18 Splitting the sector associated to an F-flower of the mantilla.

In the case of F- and G-flowers, the splitting is defined as follows: let 5, be
the line which supports an edge of the non-parental petal sharing the left-
hand red vertex and which is not in contact with the centre. We define 3,
to be the reflection of 5, in the bisector of the segment which joins the two
red-vertices of the flower. We call F'- or G-sector the region delimited by S,
B, and the lower border of the non-parental petals of the considered flower.

Note that we have two kinds of G-flowers: left-hand side and right-hand
side flowers, depending on the side of the 8-flower which is in contact with a
parental flower. However, a G-sector is symmetric.

In the case of an 8-flower, let u and v be the parental petals and let p and
q be the non-parental neighbouring petal of, respectively, © and v. Denote
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by A the red vertex of p and by B the one of q. Note that B and ¢ are
the respective reflections of A and p in the line o which passes through the
red-vertex of the 8-flower and through the mid-point O of its centre.

Define the line which starts from O and which passes through A. Then
denote by S, the ray on this line which is issued from A and which does not
cut the centre of the flower. Symmetrically, define 3, to be the reflection of
B¢ in 0. The 8-sector is defined by 3, and 5, and by the part of the lower
border of the non-parental petals of the flower which falls inside inside the
angular sector defined by £, and §,.

Figure 19 Splitting the sector associated to a G-flower of the mantilla.

We note that the parental petals also belong to another flower. They both
belong to the same other flower in the case of an F-flower. They belong to
different flowers in the cases of a G- or an 8-flower.

Note that the distinction between parental and nonparental petals intro-
duces the notions of top and bottom in a flower of the tiling. In section 4.2.2.
we shall come back to this point by the introduction of the notion of levels
of the mantilla. In the above Figures 18, 19 and 20, we say that the central
tile is the head of the sector.

It is not difficult to see how the splitting indicated in each case of Fig-
ures 18, 19 and 20 can go on downwards, from the non-parental petals of
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the flower. The non-parental petals of the central flower of the pictures in
Figures 18, 19 and 20 induce the flowers which are the head of the sectors
into which the above sectors can be split.

In the case of an 8-flower, the splitting defines four sectors exactly. We
consider that the G-flowers which appear outside the sector and around its
head are defined by another flower: this property also belongs to the induc-
tion hypothesis. Also by induction, we will check the following property.
Consider the three centres which are around a red vertex. Then, exactly one
of them is the centre of an 8-flower. The others are either both centres of
F-flowers or one centre is from a G-flower, the other from an F-flower.

Figure 20 Splitting the sector associated to an 8-flower of the mantilla.

In the case of F- and G-flowers, beyond the side of the G-sector which is
not shared by an F'-sector, we have the half of an 8-sector: a right-hand half
on the left-hand side and a left-hand half on the right-hand side.

Accordingly, as half- and right-hand sides are isometric, the splitting can
be given by the following rules:

1
F — 2F,2G,2><§8

1
G — F,QG,2X§8
8 — A4F
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For counting the elements of the spanning tree on the same level, we may
replace 2 halves of an 8-sector by a whole sector and so we get the following
matrix:

2 2 1
1 2 1
4 0 0

and so, the characteristic polynomial P of the splitting is:

P(X)=X?-4X - 2.
We note that it is a Pisot polynomial whose greatest real root is 2 + V6.

At this point, we note that we have a tiling of any sector, neglecting the
fact the borders of a sector may involve half-tiles: we know that such halves
will be completed by another sector which must necessarily be present.

Now, to tile the plane, we use the argument of [18]: consider a sector
whose head is a flower F. The parental petals of F are non-parental petals
of another flower H, higher than F in the tiling. It is clear that the sector
>’ defined by H contains the sector defined by F as a sub-sector in the above
tiling of X. Call H a completing sector of F.

It remains to prove that, whatever the choices are for the completing
sector of the head of a given sector, we obtain a sequence of sectors whose
union is the hyperbolic plane.

To prove this point, define the augmented sector of a given sector S to
be the union of the sector and its heading flower, its parental petals being
ruled out. Let B, be the greatest ball around a once for all fixed origin O,
contained in an augmented sector. Then, by completing the sector, we define
a new sector of the splitting which, when augmented, contains S and B,
around O.

First, consider the case of an F-flower F. Figure 18 indicates three centres
which share a petal with F. Call them A, B and C, from the left to the right
in Figure 18.

Taking into account the already realised splittings, as the red-vertex
shared by tiles 13, 5 and 14 is at distance 1 of the centre A and the 8-
centre situated at tile 36, A cannot be the centre of an 8-flower. It may be
the centre of a 9-flower, either F' or G. The same conclusion holds for C.
Now, the following chains of consequences hold as the reader can easily check
it:
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A=F =B=8 =C=G
=(C=F
=B=F=0=G

A=G =B=8 =C=F
=B=F=(C=F
=B=G=C=G

We could also start with B and the above chains also indicate the possible
choices: we note that B may be any kind of centre. But once it is fixed, it
also fixes the choices for A and B when B is the centre of a G-flower, and we
have two solutions in both cases when B is the centre of either an 8-flower
or an F-flower.

In all these situation, as tiles 5 and 6 in Figure 18 belong to the sector
headed by B, the ball obtained from B, by appending a new level of tiles is
also in the sector. And this new ball is exactly B,;;. And so, our claim is
proved in this case.

Next, consider the case of a G-flower which is illustrated by Figure 19.

In this case, we have to discuss the situation of four centres denoted by
respectively A, B, C' and D in the figure.

It is not difficult to note that A and D are occupied by the centre of an
F-flower. Indeed, A cannot be the centre of an 8-flower, because there is
already such a centre at distance 1 from the red vertex shared by tiles 13,
5 and 14 in Figure 19. Also, A cannot be the centre of a G-flower as there
cannot be two adjacent GG-sectors in the splitting of any sector. And so, A
must be the centre of an F-flower. By symmetry of the figure, this is also
the case for D.

Now, the possible cases for B and C' are indicated by the following dia-
gram:

B=8 =(C=F
C=d

B=F =(C=8
B=G=0C=8

It is not difficult to check that, in all these cases, tiles 36, 13, 5, 6, 16, 42
and 109 do belong to the new appended augmented sector, either in B or in
C and so, accordingly, the new augmented sector contains B,, .
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At last, we remain with the case of an 8-sector which is illustrated by
Figure 20.

Here, we have the union of the four F-sectors defined by its splitting. The
augmented sectors contains tiles 14, 15 and 16, as it can easily be checked.

As the red vertex shared by 5 and 6 is at distance 1 from the centre of
the considered 8-flower, A and B cannot be the centre of an 8-flower as they
are at distance 1 from this red vertex.

This leaves four cases a priori. But A and B cannot be both centres of
a G-flowers, as two G-sectors cannot be adjacent. And so we remain with
three cases: A and B are both centres of an F-flower, or A is the centre of
a G-flower and B that of an F-flower or, conversely, B is the centre of a
G-flower and A that of an F-flower.

In all cases, tiles 5 and 6 also belong to the union of the new augmented
sectors and so, whatever which tile is next appended in C, it is the centre of
a flower and the considered tiles together with 36, 13, 17 and 44 are in the
sector defined by C.

And so, the following property is proved:

Lemma 3 Completing a sector S by any of the possible centres which will
give rise to a new sector ¥ in which S enters its splitting, in at most two
steps of such a completion, if S contains the ball B,, around a fized in advance
tile T', ¥ contains the ball B, 1 around T'.

With this property, the proof of Lemma 2 is completed.

[
The tiling constructed in the proof of Lemma 2 is called the mantilla.

4 The partial problem

In this section, we provide the reader with an alternative solution of the
partial problem. We remind the reader that the partial problem consists in
fixing the first tile. It is well known that in the 1978 paper of Robinson
mentioned in the introduction, see [29], there is a solution of the partial
problem. As this solution deals with hexagons or quadrangles, it is not
immediately suitable for our purpose. Accordingly, I here indicate a solution
of my own which will be used for the generalized origin-constrained problem
we consider. It is different in its spirit from Robinson’s and it is adapted
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to tiling {7,3} while Robinson’s proof works only for to other grids of the
hyperbolic plane, namely {4,5} and {6, 4}.

4.1 The harp

In this section, we first describe the setting in which we define a solution of
the partial problem. We still consider the ternary heptagrid but now, taking
advantage that the first tile is fixed, we inscribe it in a context which we
force, thanks to the first tile.

Figure 21 The guidelines for the harp.

In Figure 21, we illustrate the basic construction of our solution to the
partial problem.

Indeed, the idea is to build a harp or a ’comb’ in which we unfold the
space-time diagram of the computation of a Turing machine. Without loss
of generality, we may assume that during the computation of the Turing
machine, the head never goes to the left of a cell which we call the leftmost
position. Such a restriction is familiar and it is also used in Robinson’s proofs
for the Euclidean problem. The cells of the Turing tape will be represented by
the chords of the harp. The time is represented by the levels of a Fibonacci
tree and the head will go along levels during its travel from one cell to the
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next one. After visiting a cell, the head will go down by one level as required
in a space-time diagram.

The construction is based on a splitting which is different from the one
used traditionally for the pentagrid or for the ternary heptagrid.

To this goal, we remember a notion which we used in [3, 18]. Call mid-
point line any line d which joins mid-points of the edges of the tiling in
such a way that if A and B are consecutive mid-points of edges of the tiling
on d, A and B belong to consecutive edges of a tile, see Figures 21, 43 for
an illustration. It was proved in [3, 18] that when two such mid-point lines
meet at a vertex A, it is possible to define a Fibonacci tree in the angular
sector determined by the smallest angle o defined by the lines. We call
this angular sector of the ternary heptagrid. Most often, we shall say
angular sector for short.

We split the initial angular sector Sy into three regions: a strip Cy which
is the union of a strip as defined in section 2 and the leading tile of the sector;
and two copies of the sector itself, Uy and S;. These copies are dispatched
as indicated in Figure 21: Cj is headed by the tile 1 and it is delimited by
a yellow line 5 and a green line 7. Inside the strip we have, for the first two
levels: the tiles 2, 5 and 6. The first copy of the sector, Uy delimited by the
line v and an orange line 6. In the figure, U, is headed by tile 3 and the
first level of its spanning tree consists of the tiles 7, 8 and 9. At last, 5;
is the remaining part of Sy. It is delimited by 6 and by [, the other line
delimiting Sp.

As shown in Figure 21, we repeat the splitting of Sy in S; and, recursively,
we define S, 1 by splitting S, as we did for Sy and by defining S,,,; as the
second copy of Sy in this splitting. Let C, be the strip of S,,. Using the
already introduced terminology of Fibonacci trees, consider that all the tiles
which are intersected by the line which delimits the strip on its left-hand
side are black nodes: this is what we call a chord. This choice of the status
of the head of C,, automatically defines the status of the tiles inside C,, and
inside U, the fist copy of Sy inside S,,_;. Accordingly, the head of U, is
a white node. Repeating the construction inside S,,;, we obtain that each
leading tile of the S,,’s are black nodes. An illustration of the chords is given
by Figure 22.
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4.2 The tiles for the harp

Our next task is to define tiles which can represent a sector and the chords
of its harp. This is given by Figure 23 where six tiles are given.

The tiles have coloured edges which are represented by coloured strokes
perpendicular to the edges. The leftmost tile of the first row of Figure 23
is marked with 1: it is the tile which must be first used. It is the root of
the tree. It bears three strokes only: two for its sons and one for a nephew,
the right-hand neighbour of its right-hand son on the same level of the tree.
On the same row, we find the tiles for the borders. On the middle of the
row, the tile for the leftmost border which consists of black nodes. It has
no connection with a left-hand neighbour on the same level, nor with its
left-hand uncle. Then, still on the first row, we have the tile for the right-
hand border. It has no mark for the father and no mark for the right-hand
neighbour on the same level. Later on, we shall speak of strokes only and we
shall say blank edge for an edge which bears no stroke and marked edge
for the one who bears a stroke.

Figure 22 The chords for the harp.

On the second line, we have the tile for the chords: it is a black node
with thick marks for the father and the son. Then we have the tile for black
nodes and the tile for white ones.
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Indeed, we have to prove that this set of tiles necessarily generates our
tree, once the tile marked with 1 is put.

To this aim, first number the tiles from 1 up to 6, from the leftmost tile
of the first row to the rightmost tile of the second row. Later, we denote
tile 4 by (7).

First, we prove that tile @ cannot abut with itself on its marked edges.
The dark purple stroke cannot match with itself: looking at the blank edges,
we can see that no tile can match in this way because of the position of the
red stroke in the second copy of @ The red stroke cannot abut with itself
as by the fact that translations and rotation only are allowed, there is no tile
with contiguous large blue and dark purple strokes. At last, the large blue
stroke cannot abut with itself: this would require a tile with a red stroke
contiguous to a blank edge.

Now, let us look at the dark purple stroke. As it cannot match with that
of @, it may match with one of @ As a red stroke has no contiguous blank
edge, it cannot match with the dark purple stroke of @ which is adjacent
to the red stroke. And so, it can only match with the dark purple stroke
of @ which is adjacent to the green stroke. And so, we could assemble @
together with (3) in a unique way.

At this stage, we assume @ and @ assembled together as just indicated.
Now things are easier. The red stroke of @ and the green stroke of @ force
the matching with @ as the single possibility. Assume that @ is appended
to the assembled tiles in the indicated way. Now, to complete the common
vertex of (1) and (6) which is not yet so, we could put (2) or (4). But (4)
requires a tile where a red or a light purple stroke is adjacent with a blank
edge. And so, we can assemble only @ Accordingly, we assembled the root
and the first level of the tree.

Note that if we started with the large blue stroke of @, a similar argu-
ment works. This large blue stroke cannot match with that of @ as there
is no red stroke contiguous to a blank edge. But it also cannot match with
the large blue strokes of @ for the same reason for the blue stroke of
which is contiguous to a red stoke. It cannot match with the other large blue
stroke of @ for a similar reason: there is no light purple stroke which would
be contiguous to a blank edge. And so, the large blue stroke of @ matches
with the large blue stroke of @ which is contiguous to a green stroke. Then
the assembly of the first level goes on easily, as above.

By induction, assume that we assembled the tree up to level k, all nodes
on this level being included. In this assembly, the root being excepted, the
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left-hand border consists of copies of @ only and the right-hand border of
copies of @ only. Also, we assume that for the other nodes of the assembled
tiles, black nodes are represented by copies of @ and them only, the chords
being excepted, which are represented by copies of @ We also assume that
all white nodes are represented by copies of @ and them only.

i #n 4 .

XA O R

Y,LV Y,LV Y,LV
Figure 23 The tiles for the harp. On the first row, to the left, the root of the
tree. Then, on the same row, the tiles for the leftmost branch and then for the

rightmost one. On the second row, to the left: the tile for the chords. Then the
tile for the block nodes and then, for the white ones.

Consider level £+1. First look at the first and second nodes on level &
starting from the left-hand side of the level. By induction, we have a copy
of (2) and of (6), respectively. We note that the tile which completes the
non completed common vertex of @ and of @ is necessarily a copy of
because of the adjacent light purple and thin blue strokes. This copy of
being assembled, it requires a copy of (6) to match with the red stroke of (2)
Once we assembled this copy of , the large blue stroke of @requires either
a new copy of @ or a copy of . But the same argument with the root
works here also: @ would require a tile with light purple stroke adjacent to
a blank edge and such a tile does not exist. Now, we proved that the sons of
the first node of level k£ can be assembled in a unique way and that it is also
the case for the first son of the second node of level k. With white nodes,
the green strokes force the correct tile to be assembled and now, it is easy to
see, by induction on the rank of the node on level &, that its sons can also
be assembled in a unique way. The situation is a bit different with the last
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node. In this case, as we are at the last node of level k+1, we need a tile
which must match with a copy of @, the previous node on level k+1, and
a copy of @, the last node of level k. For the same reason as with the root
and the copy of (3) on the first level, the dark purple stroke of the copy of (3)
on level £ cannot accept a copy of @ nor the stroke of @ which is adjacent
to a red stroke. Accordingly, only a copy of @ in the expected position can
match and this completes our first part of the proof.

It is also easy to check that the chord is generated by copies of @ for the
leftmost chord and of @ for all the others and only by these tiles.

At this moment, we can see that the tree and it only can be constructed
in this way, but we did not look at what we can put to the left of the left-hand
border or to the right of the right-hand border.

To this aim, we go back to the root and look at how we can complete its
blank edges. Only the copies of tiles @, @ and @ can be used. In fact
they all can contribute and, as we shall soon see, there are infinitely many
solutions.

The first think we can note is that the tiles have a top and a bottom. For
tiles of the first row of Figure 23, the bottom consists of the edge with the
red stroke and the top consists of the two opposite edges. This definition also
holds for tiles (4) and (5). For tile (6), the bottom is the edge with a red
stroke with another red-stroked edge to the left and a light-purple-stroked
edge to the right. Now, we note that tiles @ and @ have blank edges which
can match together. Also tiles @ can be assembled by their blank sides.
The same remarks also holds for tiles

Accordingly, a first solution consists in placing four roots around the first
one we considered. As it can be noted in Figure 24, five trees dispatched in
this way do not cover the plane: they are numbered from I up to V in the
left-hand picture of Figure 24. There is still room for a sixth one, whose root
is at distance 1 from the initial root which we placed there, between sectors I
and V in the left-most picture of the figure.

On the right-hand picture of Figure 24, we moved sector VI by a counter-

2
clockwise rotation of . This entails a small change in sectors IV and V. The

same transformation can be repeated, to create sector VI between sectors 111
and IV, or II and IIT or I and II. This gives us five different solutions. Now,
on both pictures of Figure 24, we can see that at least one mid-point line
is complete. Now, it is not difficult to note that the tiles which are cut by
this line are always cut at blank edges. This means that we can make each
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half-plane defined by this line move independently of each other along this
line. Or, which is the same, we can decide to fix one, for instance the half-
plane containing sector I, and to make the other move along the line. For
each mid-point line, this provides us with infinitely many solutions indexed
by Z. Let us call them IV,, V,, and VI, for instance, taking the case of the
yellow line of the right-hand picture of Figure 24 as an example.

There are also two other solutions attached to a mid-point line: in the
just considered example, one such solution is obtained by taking the limit of
IV,, V, and VI, as n tends to +o0, the other by taking the limit as n tends
to —oo. In both cases, the limit corresponds to a half-carpet in the sense of
Fibonacci carpets as defined in [18]

Before turning to the Turing computation, let us note how the tiles be-
longing to the chords can algorithmically be characterised. Indeed, it is not
difficult to locate them thanks to their coordinates.

Figure 24 The possible solutions around the initial root, tile 4 in the figure.

To this purpose, note that in the splitting represented by Figure 21,
sector S is obtained from the initial sector Sy by a shift along the right-hand
mid-point line defining the sector, namely the shift which transforms tile 1
into tile 4. Accordingly, under this shift, the level k£ of the tree T spanning
So is transformed into the level k+1 of the tree 77 which spans S;. Now, we
know that the level k£ of the Fibonacci tree contains for+1 nodes. Hence, the
level k+1 contains for3 nodes. Now, by definition of the Fibonacci sequence,
fokr3z = forao+ forr1- And so, the image of the level k£ of Ty under the shift in
Ty itself consists of the last for,1 nodes of the level k+1 of T;. Now, the first
node on the level £ of T has number f5;, and the first node on the level k+1
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has number fo519. The number of the root of 7T} is 4 in 7j, whose coordinate
is 101, and 4 = f3 + f;. By induction on k, assume that the first node v on
the level k of T} is for, + for+3 Whose coordinate is 10010%*~1. Then, from the
preferred son property of the Fibonacci tree, see [12], as T} is also a Fibonacci
tree, vy is the preferred son of v;. Accordingly, from [12], the coordinate
of V41 is 10010%**1 which represents foris + forts- And so, the induction
hypothesis is proved.
We have now the coordinates of the nodes on the chord.

Lemma 4 If x runs over the coordinates of the nodes of the level k in Ty
which belong to a chord, the coordinates of the nodes of the level k+1 in T
which belong to a chord are 10z, where the writing of x is taken with 2k+1
digits, possibly padding 0’s to the left, to which we have to append the node
of coordinate 10211, the first node of the level k+1 in Ty.

4.3 The Turing computation

Now, we turn to the tiles which represent the computation of a Turing ma-
chine. We represent them by the set of tiles of Figure 25 which we call the
set of prototiles for the partial problem, after the terminology introduced
by Berger in its proof.

Let us explain in detail how the prototiles work.

Figure 25 contains 17 tiles which are based on the six tiles used for the
construction of the harp. The first five tiles, (a), (), (¢), (d) and (e),
simply assume the transportation of the signals of the space-time diagram
of the Turing machine: the content of the cells and the state of the head.
The other tiles implement the execution of the instructions of the Turing
machine.

Starting from the root represented by tile @, the computation goes on by
tile @ as the head of the Turing machine cannot go the left of the first cell.
As we may assume that the head of the Turing machine always move, then
it must move to the right. In the general case, an instruction is triggered by
the meeting of a state signal with a cell signal. This means that the signal
of the Turing head meets a chord which bears the cell signal. The tile where
the meeting takes place is represented by one of the other tiles, tiles @ and

being excepted. The general case, when the head is inside the tree is
represented by tiles (f), (g), (i)and (j). Indeed, we have four cases as
we take into account the direction from which the state signal arrives to the
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meeting tile and to which direction the new state goes. Accordingly, tiles @
and (7 ) deal with signals arriving from the left while tiles (g) and () are
concerned by a signal which arrives from the right. Symmetrically, tiles
and @ deal with the signal of a new state going to the left while tiles%
and deal with the signal of a new state going to the right.

At this point, we have to remember that for the next meeting with a
chord, the head must go down by one level deeper. This is performed by the
above tiles: the motion to the right is sent to the red son of the chord tile
which is a black node. The motion to the left is sent to the blue son which
corresponds to a black node and, in this case, which is also a tile of the chord.
However, there is no danger with confusing this tile with an instruction tile
as in an instruction tile the state signal always arrive through an edge with
a green stroke. Once the new state signal arrives to the next level, tile @,
when the move is to the right, or tile @, when it is to the left, sends the
new signal to the neighbouring tile on the same level and in the expected
direction. Another way to see this point is to note that the new state enters
its new level through the father edge of the next tile, while in an instruction
case, the state arrives by a neighbour edge.

The tiles of Figure 25 are called prototiles because they are not the
actual tiles for a given Turing machine. They are simply the patterns followed
by the actual tiles. In the actual tiles, the symbols a, b, p, ¢ and s which
occur in Figure 25 are replaced by actual states and tape symbols taken
from the table of the Turing machine. In this regard, the set of prototiles of
Figure 25 could be called a protoset of prototiles. The only actual symbol
which is present in Figure 25 is B which represents the blank of the Turing
tape. This symbols occurs in tile (%) as it is the root and also in tiles (1)
and @ as they deal with the right-hand border of the tree.

The right border represents the body of the harp and, from the point of
view of the simulation of the Turing computation, it represents the successive
initialisation of the cells of the tape. Recall that we have to simulate a Turing
machine which starts its computation form an empty tape. And so, the tiles
of the right-hand border propagate the blank which is the initial content of
any chord. In the construction, the blank signal is always present on the
right-hand border when a state signal arrives to it, necessarily from the left.
We remark that for the left-hand border, we have a single tile, @, which
corresponds to the required property that the head of the Turing machine
never goes to the left of the initial leftmost cell which is represented by the
first chord in the simulation.
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Figure 25 The tiles for the Turing computation.

The transportation of the signals: tiles a up to e. The rest of the tiles is devoted
to the implementation of the instructions of the Turing machine.

A last word for the halting. It is assumed by tiles @, @, @ and @
Tile @ takes the information of the halting state H. It transfers it to the
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terminating tiles @ and @ through @ Tiles @ and @ stop the tiling:
the black numbers can abut only with themselves and thanks to angle %,

this leads to an impossibility.

With these indications, we can see that the above set of prototiles allows
to simulate the computation of any Turing machine starting from an empty
tape. Accordingly, we proved the following result:

Theorem 2 The sets of prototiles defined by Figure 25 together with the
assortments associated to given Turing machines constitute a family of tiling
sets for which the partial tiling problem is undecidable. Note that when the
Turing machine associated to the set of prototiles does not halt, there are
infinitely many solutions for the tiling, each of them containing at least three
roots and alt most six ones.

5 The generalized origin-constrained problem

5.1 The basic principles

We call general solution the solution which we shall construct for the
generalize origin-constrained problem. It differs from the partial solution
in this point that the first tile is not fixed and that it must be used infinitely
often as any other tile of the skeleton. In the partial problem, the first tile
is used to be the starting point of the computation of a Turing machine. In
the setting of our generalzed problem, the starting point of the computations
should be chosen at random among infinitely many ones distributed according
to the conditions (i) and (77) of the introduction. Here, we have a bit more:
all the tiles of the skeleton will be infinitely often. The condition of density
uniformity will be satisfied as follows: within a ball B of radius 6 around any
point of the tiling constructed by the skeleton, there is at least one starting
point of a computation.

In this proof, following the general pattern of Berger’s and Robinson’s
proofs, we define an infinite family of frames in which we shall proceed to
the computation of the Turing machine. As in Berger’s and Robinson’s proof,
there will be infinitely many such computations and infinitely many of them
will go on endlessly in the case when the Turing machine does not halt,
providing this way a solution for tiling the hyperbolic plane.
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Due to the relative lack of space in the Euclidean plane, where truly planar
infinite regions interfere between one another, the definition of computing
regions is rather intricate in the case of the Euclidean plane. Here, in the
hyperbolic plane, taking advantage of the large amount of space everywhere
present in this plane, we can define an infinite family of unbounded regions.
They may interfere, but it will be simpler than in the Euclidean plane: two
such regions are either disjoint or one is embedded in the other. It will be
enough to provide a mechanism to rule out embedded regions. This is not a
simple question, we shall later precisely see this in the proof.

Before turning to the precise description of the computation, we have to
formulate an important remark.

In both papers by Berger and by Robinson, they first indicate the con-
struction of a homogeneous tiling which Berger calls the skeleton where
infinitely many regions of size 2", for all values of n > 3, are delimited with
no overlapping, only embeddings. Then, in these regions, they draw signals
corresponding to the computation of the Turing machine, starting from the
initial time. And this starting point happens in infinitely many places, of
course, finitely often at each time of the construction of the tiling. This
amounts to put the following constraint as we already noted in our introduc-
tion: the first tile does not contain computing signal except, possibly, the
initial one. Now, this restriction is easily justified: if we relax this restric-
tion, we may introduce configurations which do not correspond to a starting
configuration, and it is impossible to backtrack the computation as the ac-
cessibility problem is undecidable for Turing machines.

Accordingly, we shall use the same restriction, and for the choice of the
first tile, we take any one which does not bear a computing signal except,
possibly, the initial one. Also, our construction obeys the same principles
as the construction of Berger’s and Robinson’s proofs: all tiles needed to
construct the skeleton must be present for the choice of the first tile. We
note that the number of tiles to be taken as the first one is twenty one.
However, we depart from the drawing signals: once a tile is placed, and the
algorithm may take some time to decide to place it or to take another one,
it cannot be removed. The reason of our choice is that the tiling constructed
by the skeleton only is connected and its complement in the hyperbolic plane
is exactly the union of all computing areas.

The second remark is that as in Berger’s proof, we define times which
allow to locate the process in time. From an algorithmic point of view, the
skeleton and the computations are both constructed in time and they must
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occur simultaneously. Moreover, the region of the plane which consists of the
tiles assembled at some time must be controlled up to a point. Otherwise,
it might be possible to go on the process without covering the plane, simply
because we would put tiles in one direction only. This problem seems to be
specific to the hyperbolic plane. It is the price to pay for the large amount
of space which is available at any place.

And so, there is an initial time. For the reason already mentioned, the first
tile belongs to the skeleton with, possibly, the initial signal of a computation.

From Lemma 2, we know that each sector entails the construction of a
tree, the spanning tree of the splitting. Considering a sector S, we define S,
as the set of all tiles which are contained in a flower whose centre belongs to
level k of the tree attached to S with k£ < n.

In our construction, we have a sequence of times ¢,, where %, is the initial
time and t,, for n > 1 indicates that we completed a sector which contains
a ball B,, around the first tile and with at least 2n levels of the sector: this
guarantees that the process will tile the plane if the Turing machine does not
halt.

5.2 The set of tiles

As in Berger’s and Robinson’s proofs, we have two kinds of tiles: the tiles
for the skeleton, i.e. the basic pattern which delimit the regions in which
the computations hold; and the tiles for the computation. First, we describe
the tiles of the skeleton.

5.2.1 The skeleton

For the skeleton, we have to implement the construction of F-, G- and 8-
flowers and the rules of generations of the carpet structure of the mantilla.
We have also to implement the delimitation of the trees which are candidate
for a computation using the harp model of the solution to the partial problem.

To this aim, remember that in the flowers we have two categories of tiles:
the petals and the centres. Also remember that we started with two kind of
tiles: tiles with a red vertex and two green sides and tiles with no marks.
We already mentioned a way to prevent basic tiles of the second kind, i.e.
without red or green marks, to tile the plane alone. This way consists in
labelling the edges of such a tile by numbers from 1 up to 7. It is very easy
to check that with such a labelling, the tiles of the second kind cannot alone
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tile the plane as the labels cannot match. This property is not specific to
tiling {7, 3}, indeed it is shared by any regular tiling {p, 2¢g+1}'. Due to the
matching condition on edges, the tiles of first kind should be dotted with
similar labels. Indeed, the labels are needed only on the edges of tiles of the
first kind which are shared by tiles of the second kind. A priori, this would
give 7% different tiles for the initial set of tiles which, after Berger, we call the
prototiles. As we shall soon see, we need only 29 prototiles for the skeleton,
including petals and centres.

To see this, let us fix where we put number 1 in a tile which is a centre.
For F-flowers, it may seem natural to put 1 and 7 at symmetric places with
respect to the vertical axis of reflection of the flower. It is also easy to fix
1 and 7 for an 8-flower: the red vertex is exactly on the vertical axis of
reflection of the flower. We have a different situation with G-flowers. We
already noted that there are left-hand and right-hand side flowers. Here, we
shall stress on this difference by giving to G-flowers a different numbering:
instead of clockwise increasing around the edges of the tile, the numbers will
increase while counter-clockwise going around the edges of the tile. Also,
in order to distinguish between petals, we introduce two sets of numbers:
we shall consider marked and unmarked numbers. Unmarked numbers in
{1..7} are those which we ordinarily use. Marked numbers are in {1..7}. The
difference appears below, on table 1 and Figure 26.

We remark that the new numbers do not change the fact that central tiles
alone, even by mixing the labels, cannot tile the plane by themselves.

2 3 4 5 6
F | 2 3 14 5 6
Gy | 6 5 4 3 2
G, | 6 5 4 3 2
8 2 3 4 5 6

Table 1 Table of the distribution of colours on the sides of the central tiles. The
labels are given for sides numbered from 1 up to 7 clockwise running around the
tile. For centres of G-flowers, we indicate the reverse ordering on the labels. The
labels 1 and 7 are not indicated: they are the same for F- andgs—ﬂowers, and they
are exchanged for G-flowers.

!The property does not hold for {p,q} when q is even.
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Figure 26 The prototiles for the centres: F-, 8-, G¢- and G,-centres.
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Figure 27 The prototiles for the non-parental petals.

From this, we deduce 15 prototiles from the petals, looking at the different
configurations of petals attached to edges numbered from 2 up to 6 of all
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possible centres. In this respect, we define such tiles as the non-parental
tiles which will be the meaning of this expression until the end of the report.

Above, Figure 27 displays all possible figures. Further, Figure 42 displays
the complete set of 21 tiles of the skeleton.

The non-parental petals can be grouped according to the flowers in which
they occur. This is given in table 2, below. In this table, the position of the
red-vertex in the petal is indicated by the occurrence of symbol o. The labels
are indicated by putting in first position the lowest label according to the
alphabetic order and then by by following the occurrence of the other labels
and of the red vertex while running around the tile clockwise.

2 2 3 3 4 4 5 5 6 6
F | 2077 1013 1470 5707 | 1106
Gy | 1102 3707 lol4 5077 6670
G, 1220 1103 | 4707 lol5 6077
8 1220 | 1370 1470 | 1570 6670

Table 2 Table of the non-parental petals according to their parent flower.

Table 2 results from a careful checking. It is not difficult to check, in each
case, that the configuration of each petal is unique, even when the same tile
may appear in different contexts.

In this line, we note that the following petals appear only in a fixed centre:

2077, 1013, 5707 and 1106 for F-flowers;

1102, 3707, 1014 and 5077 for G, flowers;
1103, 4707, 1015 and o77 for G,-flowers;

1370 and 1570 for 8-flowers.

For the other petals:

1470 is common to F- and 8-flowers;
6670 is common to G- and to 8-flowers;
1220 is common to G, and 8-flowers.

Now, we have to establish a converse of the table. Starting from a tile,
we necessarily obtain what can be deduced from the table and nothing else.
To this aim, we first prove :
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Lemma 5 The set of tiles defined by table 2 together with the four tiles for
the centers entail the mantilla. Namely, starting from a tile, we precisely
have the contacts which can be deduced from the table.

In order to prove the lemma, we first note that a corollary of Lemma 1
is the following result:

Corollary 1 A petal can abut at a numbered edge only with a centre, at the
edge which bears the same number. If the number on the edge of the petal is
marked, the same number on the edge of the centre must also be marked.

Proof of Lemma 5. We prove the lemma by looking at the four cases succes-
sively. Now, we make a general remark. A bit further, when we say that we
start with that and that case of centre, we do not use the properties of the
flower attached to the center. We only consider tiling matching and we shall
find out that the constraints due to matching entail the properties which we
know about the corresponding flowers.

First, we start with an F-flower. In this case, we can see that edge 4 can
abut with a single petal, namely 147o0.

Then, look at what can be put to abut with edge 5 of the centre. Looking
at Figure 42 we find that only two tiles can match with mark 5 at this edge:
either 5707 or 5077. Now, as 1470 has its two green sides radiating from its
edge 4, tile 5077 is ruled out: it requires to share its red vertex with 1470
which is not possible. Accordingly, we have 5707 as indicated in Figure 28.

Figure 28 The non-parental tiles induced by an F-centre but the last one.

Next, we consider the edge 6 of the centre. There are two possibilities,
a priori: 6077 or 1106. In order to choose the right one, we make use of
an argument which we shall repeat very often in this proof. The argument
consists in noticing that in a centre, edges are marked by consecutive numbers
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and, in particular, there cannot be two adjacent edges with identical numbers.
Let us call this property the uniqueness constraint. We use this property
in the following situation. Consider two adjacent petals sharing a common
green side. As a consequence, both petals are around two centres: the one
which we consider and another one, say a. Now, by our construction, 5707
has a common edge 7 with a. Accordingly, by the uniqueness constraint the
petal at edge 6 cannot abut with a with again a 7. And so, the petal at
edge 6 must be 1106 as indicated in table 2 and in Figure 28.

Now, we go on the construction on the other side of 1470. For edge 3
we have either 1013 or 1103. Now, in case of the latter petal, the red-vertex
of 1103 would be in contact with 1470, but this does not match with the
position of the red vertex of 1470. And so, here we have 1013.

At last, for the edge 2, we have either 1102 or 2077. But the uniqueness
constraint rules out 1102 as 1013 contributes with a 1 to the other centre.
And so, the last non-parental petal for an F-flower is 2077. We find again
the tiles indicated by table 2 for an F-centre. The complete image of non-
parental petals is also displayed in Figure 34.

Now, let us turn to an 8-centre, which is illustrated by Figures 29 and 34.

As for an F-centre, we start by petal 1470 which is the single possible
petal for an edge marked with 4. This time, we turn counter-clockwise.
Accordingly, for edge 3, we have 3707 or 1370. Now, 3707 is ruled out by the
uniqueness constraint. Indeed, 1470 already contributed with an edge 7 for
the other centre. And so, we have 1370 at edge 3. At edge 2 we necessarily
have 1220. A refinement of the uniqueness constraint is that we should have
consecutive numbers for two adjacent petals of the same centre, considering
that 1 and 7 are consecutive. We shall call this the successor constraint.
But 7 and 2 cannot be consecutive and this rules out the wrong position of
1220 at edge 2 of the 8-centre. The right position is characterised by the fact
that the edge 1 of 1220 is adjacent to the edge 7 of 1370 around the 8-centre.

Figure 29 The non-parental tiles induced by an 8-centre but the last one.
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Let us now turn to the other side of 1470. At edge 5 we have either 1015
or 1570. By the uniqueness constraint on 1, this rules out 1015 and so, the
expected tile is 1570.

At last, for edge 6 we have again a unique tile but with two possible
positions depending on whether edge 6 is in contact in the first or the second 6
in 6670. If it is with the first, then the successor constraint is violated and
so, it must be the second as displayed in Figure 34.

Figure 30 The non-parental tiles in a wrong assumption for a G,-centre.

Now, let us turn to GG-centres.

First, we shall consider GG,-centres. Let A be one of them.

We start with edge 2 for which there is a single tile: 1220. Now, this tile
can be put in two positions as at first glance any 2-edge of the tile may abut
with the 2-edge of the centre.

In Figure 30, we assume that we put a tile 1220 in such a way that its
first 2 abut with that of A. For edge 3 of A, we may have either 1013 or 1103.
The latter cannot be put with the considered position of 1220. Otherwise,
the red-vertex of 1103 would be shared by 1220, which is not possible in the
considered position. As noted, two adjacent petals are in contact with two
centres. In Figure 30, we consider that tiles 1220 and 1103 are fixed for A,
and we consider the other centre, say B. We make use of Figure 30 to look
at the tiles which can be put around B. Tile B itself has a 2-edge due to
the second one of the petal 1220 we considered. It has also a petal at 1 by
tile 1013. The order of the petal at A induces that B is a G-centre. As one
of its edges is 2, it is also a G,-centre. Now, note that the position of 1220
at B is different from its position at A. The position of the red vertex of
1220 at B forces tile 1103 at the edge 3 of B as illustrated by Figure 30.
Next, we consider the edge 4 of B. We may put either 1014 or 4707. But
the uniqueness constraint rules out lol4 and so, we put 4707. At edge 5,
we could put 1015 or 1570. If we put the latter, we need to put 1106 at the
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edge 6 of B but in this case, the red vertex of 1106 should be shared with
1570 which is not possible. And so we need to place 1olb at edge 5 which
entails 6077 at edge 6 by the uniqueness constraint. But now, as illustrated
by Figure 30, the red vertex of 6077 and that of 1013, the petal at the edge 1
of B, must be shared by the petal at 7. This is impossible for a petal and
so, this rules out the position which we first considered for tile 1220 at the
edge 2 of A.

Accordingly, 1220 abuts with A at the second 2 of the petal. But this
is the position which we had for B which is also a G,-centre. From the
argument we had for B, we conclude that the petals we put around B from
edge 2 up to 5 are correct. As at edge 5 we put 1015, we put 6077 at edge 6
as 1106 is ruled out by the uniqueness constraint. And so, also here, we find
the indication of table 2.

Now, we come to our last case for a centre: G-centres. Again, call A one
of them.

For the edge 2 of A, we may have 2077 or 1102. For edge 3, we may have
3707 or 1370. Note that these last two tiles have their red-vertex at the same
place with respect to edge 3. Now, the position of the red vertex of 2077 is
unique when the tile abuts with its edge 2 and this position requires the red
vertex to be shared by the tile which is put at the edge 3 of A. As shown
in Figure 32, it is impossible as the red vertex of the tile at the edge 3 of A
cannot be there whichever tile with 3 is placed.

Figure 31 The non-parental tiles for a G,-centre.

And so, we need to place tile 1102 at the edge 2 of A and this entails
tile 3707 at edge 3 by the uniqueness constraint. The uniqueness constraint
also forces to place 1014 at edge 4, the other possibility being ruled out. For
edge 5, there are two possibilities: 5077 or 5707.

Assume that we put 5707. Then this tile and 1014 are also adjacent
around another centre, call it B. With respect to B, 1014 and 5707 abut
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with the centre at edges 1 and 7, respectively. Note that the position of the
red-vertices of these tiles with respect to B are those of an F-flower but, as
indicated at the beginning of this argument, we cannot use this property.
Note also that the order of the edges of 1014 and 5707 which are in contact
with B induces that B is a G-centre. But at this stage, we cannot use this
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Figure 32 The first non-parental tiles for a Gy-centre. Leftmost picture: a wrong
assumption on the first two tiles.

SER .
. ..
RSP N PR

.eee

Figure 33 Illustrating the proof of wrong assumptions on a Gg-centre.




Figure 34 All the non-parental tiles induced by the centres: above, left-hand side,
an F-centre; right-hand side, an 8-flower. Below, left-hand side, a G,-centre;
right-hand side, a Gy-centre.

Starting with the edge 2 or 2 of B, we can use the position of the red-
vertex of 1o14. This position rules out both possibilities with tile 1220 as the
red vertex cannot occur just before a 2 while turning clockwise around the
petal. For the same reason, 2077 is ruled out and so, we remain with 1102.
This indicates that B is a GGy-centre. From 1102 and the edge 3 of B, the
uniqueness constraint indicates the choice of 3707 as the single possibility. In
its turn, this selection entails that we have 1014 at the edge 4 of B, again by
the uniqueness constraint. Next, we meet edge 5. Two petals could be put:
5077 or 5707. If we put 5707, as illustrated by Figure 33, both positions of
6670 lead to a contradiction: as from the tile which abuts at the edge 7 of
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B there is already a red-vertex in contact with the petal at edge 6, the red
vertex of 6670 should match with it which cannot be the case. This forces
the edge to be 6, which is impossible for B which is a Gy-centre. And so,
we have to put 5077 at the edge 5 of B. But in this case, the red vertex of
5077 is also in contact with the petal to be placed at the edge 6 of B. This is
incompatible with the other red-vertex imposed by the petal at edge 7. And
so, we are led to a contradiction, as expected.

From this contradiction, we conclude that we have to put 5077 at the
edge 5 of A. And this matches with 6670, provided that we take the position
in which the red vertex of 6670 abuts with that of 5077. This is possible as
indicated in Figure 34.

Again we find the line of table 2.

Now, the rest of the proof is easier.

We first note that in most petals, we can write the numbering of its edges
in the form «, 3,7 with a € {2..6} U{2..6} and 3,7 € {1,7}. In such a case,
we consider o and, in many cases, there is a single centre which abuts with
.

The following tiles belong to these cases:

2077, 1013, 5705 and 1106 require an F-flower;
1370 and 1570 require an 8-centre;

1102, 3707, 1014 and 5077 require a Gy-centre;
1103, 4707, 1015 and 6077 require a G,-centre.

There are three remaining tiles: 1220, 1470 and 6670.

First, let us consider 1470. The problem comes from the fact that this
tile may belong either to an F-flower or to an 8-one. The tile itself cannot
determine the choice between these two kinds of centre. However, if we take
a neighbouring tile, it is necessarily of the form «, 8,7 as above indicated
and « fixes the choice: F-centre when o = 3, then it must be 1013, 8-centre
when o = 3 and it must then be 1370. Similarly, the choice is F-centre when
a = 5 and it must be 5707, and it is 8-centre when o = 5 and then the tile
must be 1570.

Consider the case when the tile is 1220. In this case, the tile may belong
either to a G,-centre or to an 8-one. Here, the tile for 3 determines the
choice: if it has a side marked with 3, the required centre is a G,-one; if
it has a side marked with 3, it is an 8-centre. Now, we can note that the
abutting of the tile with the centre is not the same. We know that 1220 may
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abut a centre in two ways, depending on which one of its 2’s is in contact
with the centre.

Looking at Figure 34, we can see that petal 1220 abuts with an 8-centre
by its first 2 while it abuts with a G,-centre by its second 2. From the already
seen arguments, if we choose the position, it forces the choice of the centre.
Indeed, imagine that we have a G,-centre abutting at each 2 of petal 122o.
Then, looking at Figure 30, we have a situation where petal 1220 is in such
a configuration. And we have then seen that the parental couple constituted
by petal 1220 with petal 131 over a G, centre induces a contradiction when
we arrive at the petal for edge 7. If we assume that each 2 of petal 1220
abuts to the edge 2 of an 8-centre, the discussion is simpler.

Figure 35 An impossible situation: two 8-centres abutting petal 1220 by both its
two 2-edges.

As indicated in Figure 35, there is another petal between both centres. It
has an edge 1 and an edge 3 and there is no tile where 1 comes immediately
after 3 when we run clockwise around the tile. And so this situation also is
impossible.

At last, consider the case of a tile 6670. From what we established, two
centres can have such a tile: a Gy-centre or an 8-one. However, as in the case
of tile 1220, there is a difference in the position of the red-vertex of this tile
with respect to the centre. When the red-vertex is the closest to the centre,
this means that its second 6 is in contact with the 6-edge of the centre which
necessarily is a Gy-centre. In the other case, when the tile abuts the centre
by its first 6-edge, the centre must be an 8-one. Accordingly, the same tile
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abuts at the same time to a Gy-centre and to an 8-one. Also, it cannot abut
by both its 6-edges with two 8-centres or with two Gy-centres. We can see
this point directly as in the case of tile 1220.

Figure 36 An impossible situation: two 8-centres abutting petal 6670 by both its
two 6-edges.

Indeed, if we have two 8-centres, Figure 36 shows that between the two
6-edges of the tile this requires another tile with a 7-edge just before a 5-edge
when turning clockwise around the tile. We can check in Figure 42 that there
is no such tile.

If we have two Gy-centres, in fact the argument is symmetric to the one
we used for 1220 tiles with two G,-centres. This means that we have to look
at how we find the tiles around a Gy-tile starting from tile 6670.

And so, for one 6-edge we have the expected position for a G,-centre,
while for the other 6-edge, we have another position with the Gy-centre. Let
B be the second Gy-centre with tile 6670 abutting to the 6-edge of B by
its second 6-edge. Denote by A the other Gy-centre. It is not difficult to
see that with 6670 abutting as indicated at the 6-edge of B, necessarily, the
5-edge of B receives tile 5707. With the other possibility, namely 5077, the
red-vertex would have to be shared with 6670, which is not possible. And
so, this gives 6670 and 5707 as parental tiles for A where tile 6670 abuts the
6-edge by the first 6-edge. Then, turning around A, we successively find that
the 5-edge of A must abut with tile 5077 due to the necessity to share its
red vertex with tile 6670, which is now possible. Then, by the uniqueness
constraint, edge 4 must receive tile 1104. By the same reason, edge 3 must
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receive tile 3707 and, similarly, edge 2 receives tile 1102. Now, the petal at
edge 1 has already a red vertex from the side of edge 7 where tile 5707 abuts
and it also has to share another red vertex on the side of edge 2 by the red
vertex of 1102. As this is impossible, we conclude that the two 6-edges of a
tile 6670 cannot receive two G-centres.

The correct solution is a Gy-centre at one 6-edge, the first one, and an
8-centre at the other 6-edge, the second one.

Figure 37 An impossible situation: two Gy-centres abutting petal 6670 by both
its two 6-edges. The tiles around one of them with a contradiction.

At this point, we proved that the mantilla can be constructed down-
wards in any sector. We have to see that the considered set of tiles allows
us to go upwards also.

It is not difficult to see that the first thing we have to do is to determine
what the parental tiles are.

Our first remark is that we should check that parental tiles do not bring
in new types of tile. Indeed, a parental tile in a given flower is also a non-
parental tile in another one. Accordingly, we should have already all possible
types of tiles.

As previously, this checking will be performed from the tiles themselves.
We look at the marks and do not take into consideration the results we
obtained from the splitting process. Indeed, it will turn out that we find
again the results of Lemma 2.

First, we consider an F-flower. And so, we look at the tiles which can be
put at edges 7 and 1 of the F-centre. Taking into account that these tiles
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are also non-parental tiles of another flower, we look among the tiles defined
by table 2.

Consider the configuration defined by the two red vertices of the flower
which are at another end of an edge in contact with the centre. Starting from
the edge of the centre and clockwise running around the expected petal, we
find that its pattern must be of the form 7oxy for the edge 7 and luvo for
the edge 1 of the centre. Moreover, edges y and u are consecutive in the new
centre and, accordingly, the successor constraint applies to them.

Looking at table 2, we find that the possible patterns for these petals are:

e edge 7: Told, ToT5, ToT3, To66, ToT4, Tol3 and 7ol5.
e edge 1: 1310, 1470, 1410, 1220, 1510, 1370 and 1570.

Let us start with the edge 7 of the centre.

Consider 7o14. Table 2 indicates either an F-flower or an 8-one. We get
y = 4 and so, u =€ {3,3} from the successor constraint, as the orientation
of F- and 8-centres are the same. If we take u = 3, due to 4, we deal with
an 8-centre and so the tile at edge 1 is 1370. If we take u = 3, we deal with
an F-flower and now, the petal at edge 1 is 131o0.

Consider 7075. From table 2, it requires an F-centre. As y = 5, we get
u =4 and so we have petal 1470 at edge 1. Note that 1470 is also 7014, but
the position of the tiles is not the same with respect to the initial F-centre.
It is also not the same in the new centre.

Consider 7073. From table 2, it belongs to a Gy flower. Accordingly, the
successor constraint and the orientation give u = 4 and so, we obtain 1410
for edge 1.

Consider 7066. This can be either an 8-flower or a Gy-flower. The succes-
sor constraint and the different orientation give us u € {5,5,7}. Now u =7
means a tile with pattern 17vo. Table 2 has no tile with this pattern. This
rules out the case of a Gy-centre. For an 8-centre, we necessarily have u = 5
and so we get tile 1570.

Consider 7o74. From table 2, this requires a G,-centre only. From y = 4,
the orientation and the successor constraint give us v = 5. And so the petal
at edge 1 is 151o.

Consider 7013. From table 2, this requires an 8-centre only. By the
successor constraint and the orientation we get u = 2 and so, the petal at
edge 1 is 1220.

At last, consider 7o15. From table 2, this again requires an 8-centre only.
The successor constraint and the orientation yield v = 4. Accordingly, the
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petal at edge 1 is 1470.
This information is gathered in table 3, below.

F, F., Gy G, 8 8, 83 8,
1470 | 1013 | 1014 | 1015 | 1220 | 1370 | 1470 | 1570
7 | 5707 | 1470 | 3707 | 4707 | 1370 | 1470 | 1570 | 6670

Table 3 The possible values of the parental tiles of an F-flower.

We note that the table gives additional information about the position of
the flower induced by the indicated parental petals. In what we computed,
we see that there are a single case for Gy~ and G.-flowers which corresponds
to the fact that in a G-flower, there is a single F-son. For an F-flower, we
have two cases which corresponds to the fact that an F'-son has two F'-sons.
One is on the left-hand side, it is determined by petals 5707 and 1470 as we
can see in Figure 34. This is why table 3 indicates Fy. The other F'-son of
an F-flower is determined by petals 1470 at edge 7 and 1015 at edge 1 as
we can see in Figure 34. From this we understand the indication F, of the
table. Now, it is easy to understand the indications 8;, ¢ € {1..4} of the
table. An 8-flower has four F-sons and, numbering them from 1 up to 4,
going clockwise around the centre as we can see from Figure 34 we obtain:
the first F-son is determined by petals 1220 at edge 1 and 1370 at edge 7,
the second by 1370 at edge 1 and 1470 at edge 7, the third by 1470 at edge 1
and 1570 at edge 7 and the last one by 1570 at edge 1 and 6670 at edge 7.
These are exactly the indications of table 3.

Now, consider the case of a Gy-flower.

The configuration of the parental petals which can be seen in Figure 34
indicate that the pattern of a tile put at edge 7 is of the form Tuov while it
is of the form lozy for a petal at edge 1. We have also that y and u must
observe the successor constraint. Now, we note that the tile at edge 7 is also
in contact with the petal at 6 which is 6670. From the first part of this proof,
we know that the other edge 6 of the petal is in contact with an 8-flower,
and it is not difficult to check that this edge 6 and v must also satisfy the
successor constraint. As we now know that there is an 8-centre at this place,
the orientation indicates that v = 7 and so, the tile at edge 7 has the pattern
Tuo7. From table 2, the possibilities are exactly: 7207, 7507 and 7607.

On another side, the possibilities of the pattern loxy for the petal at
edge 1 are exactly the following, taken from table 2: 1013, 1014 and 1o015.
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Consider 7207. From table 2, this matches with an F-centre only. Ac-
cordingly, due to the successor constraint and the orientation, u = 3. And
so, among the above three possible petals at edge 1, only 1013 is possible.

Consider 7507. Table 2 indicates that this petal matches with a G-centre
only. From the successor constraint and the orientation, v = 4. And so, this
selects 1014 from the three possibilities for the petal at edge 1.

Consider 7607. From table 2, we know that this matches only with G-
centres. Accordingly, we get u = 5 from the successor constraint and the
orientation. This selects 1015 as the single possibility for the petal at edge 1
among the possible three ones.

This gives us the information given in the left-hand side table of tables 4.

F Gg GT F Gé Gr
1013 | 1014 | 1015 1 1106 | 1102 | 1103
7 | 2077 | 5077 | 6077 7 | 5707 | 3707 | 4707

Table 4 The possible values of the parental tiles of a G-flower. On the left-hand
side, the case of a Gy-flower. On the right-hand side, the case of a Gr-flower.

Now, consider the case of G,-flowers. We argue in a very symmetric way
with respect to the case of Gy-flowers as can be expected from Figure 34.

Indeed, we first determine the patterns of the petals at edge 7 and edge 1.
From Figure 34, we can see that the patterns are 1xoy for the petal at edge 1
and 7uvo for the petal at edge 7. We have also the successor constraint on
edges y and u. Now, petal 1220 which abuts the G,-centre by its second
edge 2 also abuts an 8-flower by its first edge 2. Now, this 2 and z must
obey the successor constraint. Due to the orientation, we obtain that x = 1.
And so, the pattern for a petal at edge 1 is 11oy. Table 2 indicates that the
possible patterns are exactly: 1106, 1102 and 1103.

On another side, table 2 indicates that the patterns 7uvo are exactly:
7720, 7570, T370, 7750, 7470 and 7760.

Consider 1106. From table 2, this petal belongs to F-flowers only. Ac-
cordingly, from the successor constraint and the orientation, v = 5. The
single possibility for an F-centre is 7570.

Consider 1102. From table 2, we can see that this petal occurs for G-
centres only. The successor constraint and the orientation fix v = 3 which
yields 7370, again from table 2.
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Consider 1103. From table 2 we obtain that this petal belongs to G,-
centres only. From the successor constraint and the orientation we conclude
that v = 4. Table 2 indicates 7470 as the single possibility.

This gives us the information which is displayed by the right-hand side
table of table 4.

We have an important remark from these arguments and the table: the
parent of a G-flower is either an F-flower or a G-flower. It is never an 8-
flower.

Now, let us turn to the case of an 8-flower.

From Figure 34, we note that the pattern of the parental tiles are of the
form 7Tzyo for the petal at the edge 7 of the centre and louwv for the petal
at edge 1. Contrarily to the previous cases, this time y and u are not in
contact with the same centre. Accordingly, we shall obtain two flowers and,
there will probably be some choice. However, as we shall see, the choice
cannot be arbitrary as the considered flower are not completely independent:
they share a petal which we shall call the third petal, which shares the
red-vertex belonging to both parental petals. We denote afvyo the pattern
of this petal. We note that the successor constraint applies to y and « as
they are in contact with the same centre and adjacent with respect to it and
that, for a similar reason, it also applies to v and u.

Now, we note that the petal at the edge 6 of the centre is 6670. As
we noted in the previous study, such a petal abuts to both an 8-flower and
to a Gy-flower by its edges 6. Accordingly, the other edge 6 of the petal
is in contact with a Gy-centre and as z is adjacent to that 6, the successor
constraint and the orientation entail that x = 7. Accordingly, the pattern
of the parental petal at edge 7 is 77yo. From table 2, we can see that there
are exactly three such patterns: 7720, 7750 and 7760. We note that none of
them occurs in an 8-flower.

Similar considerations hold with the petal at edge 2 which is 1220. Such
a petal abuts to an 8-centre and to a G,-one by its two edges 2. And so, the
second edge 2 of this petal is in contact with a G,-centre. As v is adjacent
to this second edge 2, it is also in contact with the G,-centre, see Figure 34.
By the successor constraint and the orientation induced by a G,-centre, we
conclude that v = 1. Accordingly, the pattern of the parental petal at edge 1
is loul. Table 2 shows us that there are exactly three such patterns: 1061,
1021 and 1031. We note that here also, none of these patterns occurs in an
8-flower. This confirms that there cannot be more than one 8-flower around
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a red-vertex.

We shall consider each case with the petal at edge 7 and, at the same
time, we shall determine the third petal and the third centre to which it
abuts.

Consider 7720. Table 2 shows that this petal occurs only with an F-
centre. With the successor constraint and the orientation induced by the
F-centre, this entails & = 1. There are a lot of patterns 15yo. Table 2 gives
us all of them: 1310, 1470, 1410, 1220, 1510, 1370 and 157o.

This gives us v € {1,2,7}. Next, the successor constraint on v and u
indicates that for v = 1 u € {2,2,7}. And so, the single possibility is 1021
which corresponds to a Gy-centre. For the third petal, we have then three
possibilities, the patterns with v = 1: 1310, 1410 and 1510. Table 2 indicates
that the corresponding flower is, respectively, an F-flower, a G-flower and a
G,-flower. This corresponds to the fact that in a G-flower, the flower which
is on the right-hand side of the F-son is a G-flower. This is also the case in
an F-flower for its right-hand side F-son. Figure 34 shows us that indeed,
petal 1310 stands between the right-hand side F-son of an F-flower and the
Gg-son which is on its right-hand side.

Now, consider the case when v = 2. This induces tile 1220 which is in
contact with both an 8-flower and a G,-flower by its edges 2. Now, as the
8-flower cannot abut with u as no petal at edge 1 of the main centre can
belong to an 8-flower at its edge u, we have that u is in contact with a G-
centre. Accordingly, by the successor constraint and the orientation, u = 3
and this gives us 1031 as the petal at 1. Note that the fact that the third
flower is an 8-centre is in correspondence with the fact that the GG,-centre is
on the right-hand side of the F-centre.

At last, consider v = 7. The patterns lu7o are: 1470, 1370 and 1570.
They fit either with an F'-centre or an 8-one. Accordingly, taking into account
the orientation, the successor constraint gives u = 6 which provides us with
1061 for the parental petal at edge 1. All the patterns we have just seen are
possible for the third petal. We can see that 1370 and 1570 give rise to an
8-flower only, corresponding to the petal which is between the second and
the third F-son of an 8-flower and the third and fourth, respectively. For
what is 1470, it is possible with an 8-flower: it is then between the first and
the second F-son. It is also possible with an F'-flower: it is then between the
two F-sons of the flower.

Now, consider the case when the petal at edge 7 is 7750. This tile occurs
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only with Gy-centres. Accordingly x = 5 and, from the successor constraint
and the orientation, @ = 6. And so, the third petal is 6670. This gives
us v = 7 and so, from the successor constraint, v € {6,6,1}. Asu =1
corresponds to a pattern which does not exist in table 2, we conclude that
only 1061 matches with the constraints for the parental petal at edge 1. This
corresponds to an F-flower.

As we know, a petal 6670 is in contact with both a Gy-centre and an 8-one
by its edges 6. We know that the parental petal at edge 7 is also in contact
with a G-flower by its edge 5. Accordingly edge « of the third petal is also
in contact with this Gy-flower. And so, the second edge 6 of the third petal
is in contact with an 8-flower. This corresponds to the fact that we have a
G-flower on the left-hand side of an F-son of a flower. This may occur only
in 8-flowers as already noted. In the other flowers, the flower which is on the
left-hand side of an F'-son or the left-most F'-son is a G,-flower.

At last, consider the case when the parental petal at edge 7 is 7760. From
table 2, we can see that such a tile only occurs in G,-centres. Accordingly,
the orientation and the successor constraint give o = 7. From table 2 again,
the patterns of the form 783vo are: 7720, 7570, 7370, T750, 7470 and 776o0.

From the possible patterns of the parental petal at edge 1, we know that
u € {2,3,6} and from what we have above we can see that v € {2,5,6,7}.
If u = 2, we have 1021 at edge 1 of the main centre. But as a non-parental
petal, 1021 only belongs to Gy-flowers. Accordingly, due to the orientation
and from the successor constraint, we should have v = 1 which is impossible.
If u = 3, we have petal 1031 which requires a G,-flower from table 2. But in
this case, we need v = 2, which is not the case.

We remain with © = 6 which yields 1061, a petal which occurs with F-
flowers only according to table 2. From the orientation and the successor
constraint, this gives us v = 7, which is possible. Then, we obtain the
following patterns for the third petal: 7570, 7370 and 7470. From table 2,
we get that the third centre is of type F', G, and G, respectively. All these
cases are possible as the situation of a G,-flower at the left-hand side of an
F'-son occurs in these cases exactly.

We can sum up this results in tables 5. The first one gives the parental
tiles. For each couple of parental tiles, the second gives the third petal and
the third centre.
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F-F |F-G, |F-G, |G,-F |G,-F
1106 | 1102 | 1103 | 1106 | 1106
7 | 2077 | 2077 | 2077 | 5077 | 6077

F-F F-G, |Gs-F
3" | 1470 | 1470 | 1370 | 1570 | 1220 | 6670
F 8 8 8 8 8

F-G, G,-F
3" |1 1310 | 1410 | 1510 | 7570 | 7370 | 7470
F Gg Gr F G!Z Gr

Table 5 Above: the possible values of the parental tiles of an 8-flower. Below, in
two tables, the third petal and the third centre.

Note that table 5 shows that the two centres defined by the petals at
edge 7 and at edge 1 cannot be both G-centres, a situation which was already
ruled out by the definition of the splitting.

Accordingly, the proof of Lemma 5 is completed. m

5.2.2 The algorithm

In Lemma 2, we already indicated that the mantilla can algorithmically be
constructed.

In this section, we precisely describe the construction algorithm. This
algorithm is an important piece for the proof of the main theorem of this
report. The algorithm which we shall use later is an adaptation of this one
to the changes which will introduce in the set of tiles itself. Basically it will
be the present algorithm.

The algorithm works on two copies of the grid {7,3}. We may imagine
that one of them is transparent and that it is laid on the other. This boils
down to assume that we have a bijection between the two copies of the grid.
This bijection can be materialized by the coordinates which were introduced
in [3]. We then fix a central tile in each copy which, by definition, receives
coordinate 0.
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One copy is the background. It is used by the algorithm to compute a
sequence of balls B,: B, is the set of tiles which are at a distance at most n
from the central tile.

The other copy is the main plane where the algorithm constructs the
mantilla.

To that purpose, we make use of truncated sectors built from the sec-
tors which we defined in section 3.2. For this, we define levels.

Definition 2 Two neighbouring tiles are at the same level if and only if
they share a green side. A centre is at the level of the majority of its non-
parental tiles.

This definition can be extended by transitivity. Accordingly, by definition,
two tiles 7, and 7, are at the same level if and only if there is a sequence 7;
of tiles with ¢ € {0..k} for some natural number £ such that 7, =7, 7, = 7o
and 7; and 7;;; share a green side for i € {0..k—1}. Now, the relation to be
at the same level is an equivalence relation and, by definition, a level of
the mantilla is an equivalence class for this relation. Next, we can order
the levels. To this purpose, we fix a tile 7y which, by definition, will be at
level 0. The class of all tiles at the same level as T define level 0 of the
mantilla.

Now, consider the levels inside a sector. The connections are as follows:

Lemma 6 In the sector headed by an F-flower or a G-flower, the centres of
the F'- and G-sons are at the same level as well as the 8-sons which are in
contacts with its petals at edges 6 and 2 in the case of an F-flower, at edges 2
and 5 in the case of a Gy-flower, at edges 3 and 6 in the case of a G,-flower.
In the sector headed by an 8-flower, the centres of its F'-sons are also at the
same level as well as the centres of the two G-flowers which are in contact
with the parental petals of the 8-flower.

Proof. Obvious.

At this point, we remind the reader of the fact that the splitting of a
sector, whichever it is, generates a tree which we call the spanning tree of
the splitting, see [12, 18].

Now, as indicated by Figures 38, 39 and 40 below, we have that a level of
the mantilla inside a sector follows a level of the spanning tree for this sector.

Now, following the levels on neighbouring sectors, we can see that the
majority of the non-parental tiles of the F- and G-flowers whose parental tiles
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are at level 0, are at the same level and we define this level as level 1. It is
plain that this definition can be repeated by giving to level 1 the rdle of level 0.
By induction, we construct such a numbering, downwards and upwards. The
number attached to a level is called its depth. As a consequence, we define
an order of the levels which is induced by their depth. Again following levels
in a sector, we can see that a level which does not contain the leading centre
of the sector but another tile inside the sector defines a level which splits its
complement in the sector into two regions: one contains the levels which are
higher than this one, the other the levels which are lower.

Now, we can define a sequence of sectors {3, }nemw such that 3, C 3,1

and | X, = IH?. We call such a sequence a covering sequence of sectors.
neN

This construction reminds a construction which we performed in [18]. The
proof is based on the property that a sequence of angular sectors may cover
the hyperbolic plane, whatever we choose the angle for the members of the
sequence.

We already saw in the proof of Lemma 2 that it is possible to construct
a covering sequence of sectors by the completion process of sectors. Taking
a sequence of covering sectors X, of the hyperbolic plane we get:

Lemma 7 Let P, be a level of the mantilla where n is its depth. Then the
complement of P in the hyperbolic plane consists of two regions. One s the
union of levels P,, with m < n, it is said to be upper than P,. The other
region s the union of levels P, with m > n and is said to be lower than P,.

Evidently, we have the following:

Lemma 8 In an F-flower, the parental tiles and the centre are at level n
and the non-parental tiles are at level n+1. In an 8-flower, the centre and
all the petals are at the same level. In a G,-flower, the parental petals, the
centre and the petal at edge 2 are at level n while the remaining petals are
at level n+1. In a G.-flower, the parental petals, the centre and the petal at
edge 6 are at level n while the remaining petals are at level n+1.

Accordingly, we consider a truncated sector as the intersection of a sector

with the levels which are lower than a fixed one. To avoid trivialities, we
assume that the fixed level intersects the sector.
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Figure 38 Level 0 and level 1 in an F-sector.

Figure 39 Level 0 and level 1 in a G-sector.

70



Figure 40 Level 0 and level 1 in an 8-sector.

Now, we consider the algorithm of Figure 41.

Accordingly we proved:

Lemma 9 The mantilla can be constructed by the set of 21 prototiles given
by tables 2 and 1 as well as Figure 42 applying the algorithm of Figure 41.

Now, we can indicate another property of the algorithm. As it clearly ap-
pears on its description itself, the algorithm is fully deterministic for the
construction of a sector once its leading centre is fixed. But it is non-
deterministic in the construction of the next leading centre. It is not difficult
to see that there are infinitely many different constructions for the mantilla.
Indeed we have continuously many such solutions as it is clear from step 3
of the algorithm.
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1. Pick at random a tile 7j from the set of tiles of Figures 26 and 27.
This is time tq.

2. If Ty determines a centre C', take and complete the non-parental
tiles of C'y. If Ty does not determine a centre, take at random a tile
(petal or centre) which matches with 7y. Then, C} is determined and
complete its non-parental tiles. This is level 0 of the sector. Next,
choose an F-son of C'; to be the centre By of the balls. Now, go on in
the sector, until its level 1 is complete. When this is done, it is time
t1. Then By, the ball of radius 1 around By is contained in the union
of the tiles which are placed up to now. Say that C; is the leading
centre of the sector. Recall that once a tile is placed it cannot be
removed.

3. At time t,,, choose at random two tiles among the possible parental
tiles of C,,, using tables 3, 4 and 5. If C), is an F- or G-centre, the
parental tiles determine a centre C,; which defines a new sector
which contains B, .. If C, is an 8-flower, the parental tiles determine
two centres A and B which share a third tiles which has a red-vertex
in common with the parental tiles. Also choose the third tile at
random among the possible ones using the appropriate tables 5. It
determines a centre C),; which leads a sector which contains B, ;.
Once C,,41 is obtained, complete the new sector led by C,,; downto
level 4,1 such that B,,,; is covered. When the sector up to level £,, 1
is complete, it is time ¢, 1.

4. Increment n. Go to step 3.

Figure 41 The algorithm to construct the mantilla.

We already indicated a point which we shall prove later: there are in-

deed many periodic solutions among the ones which can be produced by the

algorithm. Now, we turn to the main property of the algorithm:

Theorem 3 The algorithm of Figure 41 can produce all the possible realiza-

tions of the mantilla.

Proof. Assume that we have a solution for the mantilla. We shall apply the
algorithm. But we run it in checking mode. This means that each random
choice indicated in Figure 41 is replaced by what is given by the solution
at this point of the construction. As any possible solution must conform to

tables 3, 4 and 5, our claim is proved. W
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Figure 42 The 21 prototiles for the mantilla. The lowest row indicates the tiles
for the centres. The petals of the flowers are to be taken among the first 17 pro-
totiles of the other rows.

Figure 42 does not yet display the set of prototiles for the skeleton. This
will be done later by the change of four tiles which are the nonparental tiles
of a G-flower which are parental tiles of their F-sons.

5.3 The computing regions

Here, computing regions are defined with the help of Fibonacci trees which
will be generated by a simple rule. We shall study the properties of the trees
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in order to select some of them which will constitute the computing regions.
The selection will keep infinitely many such regions.

Then, we shall explain how we proceed to the computation. In both cases,
we also consider the needed set of tiles.

5.3.1 The trees

First, we define what we shall from now on call a tree.

Definition 3 Say that a set of tiles of tiling {7,3} is within a tree if the
centres of the tiles belong to the angular sector defined by two mid-point lines
By and By issued from the mid-point A of an edge n of the tiling whose angle
is a, the angle which defines the angular sectors of tiling {7,3}. We also
assume that the line supporting n is the bisector of the angle made by 31 and
Ba at A. The set of tiles is called the area delimited by the tree or, simply,
the area of the tree.

Next, we define where the trees are placed. To this aim, we use a very
simple criterion:

Definition 4 In the mantilla, we call candidate to a computing region,

simply candidate, the area of a tree whose root is the centre of an F-flower
which is the F-son of a G-flower.

We shall prove two basic properties of the candidates to computing re-
gions: they are completely contained in the sector defined by the F-flower
whose centre is their root. We also prove that two candidates have either
distinct areas or the area of one contains the other area.

Lemma 10 In the mantilla, a candidate is completely contained in the sector
defined by the F-flower which defines the root of its tree.

Proof. Consider Figure 43. Using the numbering of the tiles, note that a
tree is rooted in tile 104 and that the mid-point lines which define it start
on the mid-point of the edge shared by tiles 39 and 40. Denote by 5, and 3,
the respective left- and right-hand mid-point lines which we just considered.
Tile 104 is the centre of an F-flower whose sector is delimited by the lines
which support the common edge of tiles 102 and 103 on the left-hand side
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and the common edge of tiles 105 and 106 on the right-hand side. Denote
these lines by d, and J, respectively.

Now, it is not difficult to see that the line v, which is shared by the tiles 39
and 15 in Figure 43 is perpendicular to both 8, and d,. And so, as these lines
are non-secant, two of the half-planes which they define are disjoint. They
are precisely the half plane containing the tree, delimited by [, and the
half-plain delimited by &, which does not contain the sector.

A similar result holds for ~,, the line which supports the common edge
between tile 40 and tile 15: ~, L 8, and v, L §,. With a similar remark
about the half-planes defined by 5, 3, ¢, and é,, we conclude that the tree
is strictly contained in the sector. m

Indeed, we can say more: between the leftmost branch of the tree and
the left-hand border of the sector, new trees appear. This can be seen in
Figure 43. The configuration of tile 104 is exactly that of tile 2. Note that
tile 17 plays for tile 2 the role which is played by tile 277 for tile 104. There is
a shift transforming the configuration of tile 2 into that of tile 104. The same
shift applied to tile 104 provides us with a new tree between the rightmost
branch of the tree rooted at tile 104 and the right-hand border of the region
defined by the F-flower whose centre is tile 104.

Now, let us start from the parental petals of an F-flower which is the
F-son of a G-flower. There are two possible couples of such petals: 3707 and
1014 in the case of a Gy-flower, 4707 and 1015 in the case of a G,-flower.

Consider the right-hand border.

We successively meet the following tiles, starting from the first one, say
lola with « € {4,5}:

rank 1 2 3 4 5 6 7 8 9 10 | 11

tile 7 2 6 5 15 | 14 | 39 | 38 |102 [101 | 267
pattern |lola | F |2077 |1013 | G, [1102 |3707 | Gr [6077 |1015 | G,

sides |o—1 [1-2 [2—0 |o=1 [1-2 |2—0 |o=T7 |7T—6 |6—0 |o—1 [1-2

Table 6 The ultimately periodic path followed by the mid-point line of the right-
most branch of a computing tree. The table indicates the patterns of the tiles
crossed by the mid-point lines. For each tile, it also indicates the sides of the tile
which are crossed. The ¢ sign indicates a green side.

We note that the sequence of tiles crossed by the mid-point lines is ulti-
mately periodic. The period involves six tiles and the aperiodic part at the
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beginning of the sequence involves four tiles. Note that the table also indi-
cates the sides which are crossed by the mid-point line for each tile involved
by the border. In the table, a green side is represented by .

Figure 43 The tree generated by an F-flower which is the son of a G-flower.

A similar table can be established for the left-hand border where the first
tile is 8707 with 8 € {3,4}:

rank 1 2 3 4 5 6 7 8 9 10 11
pattern ,8707 F 1106 |5707 | Gy |6077 |1015 Gy 1162 |37.7 | Gr
sides |o=7 |7=6 | 6—0 |o=T7 |7=6 | 6—0 |o=1 |1-2 | 2—0 | o=7 | 7-6

Table 7 The ultimately periodic path followed by the mid-point line of the right-
most branch of a computing tree. Same conventions as in table 6.
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Taking into account that the construction of the tiling is deterministic
when we go from a centre to its non-parental petals, the sequences defined
by tables 6 and 7 for the ranks, the patterns and the sides are the same for
all trees. Accordingly, we proved the following result:

Lemma 11 The sequence of the tiles crossed by the border of the tree is
ultimately periodic. The period is the same for the right-hand- and for the
left-hand borders.

Let us look again at the tiles involved in the border.

The initial tiles lola and 5707 may occur in the period. This is the case
for « = 5 and 5 = 3 only. Consider a tile 1o15. When it is the first tile of a
tree, the border is the right-hand one and it crosses sides ©—1. We note that
the concerned sides are on the left-hand side of edge 5 when the red-vertex is
below this edge. When it appears in the periodic part of the border, the same
tile is also crossed at sides o—1. As we can see on Figure 43, the crossed side
are on the other side of edge 5, with the red-vertex again in a below position,
see tile 101 in Figure 43. This means that another border may use this tile
as indicated. A similar remark holds for tile 3707. It is crossed along sides
o—7. But the crossed sides are on the right-hand side of edge 3 when the
red-vertex of the tile is below this edge. When tile 3707 again appears in the
period of a border, it is crossed also at edges ¢—7, but on the right-hand side
of the tile when the red-vertex is below edge 3, as can be noted in Figure 43
with tile 39. This means that this tile may also be crossed by another border
at the same time. In Figure 43, this is the case for tile 39.

Another tile can be crossed by two borders at the same time. It is, of
course, the F-tile which is at the root of the tree. The involved edges are
1—2 on one side and 7—6 on the other.

Let us look at the other tiles. Using tables 6 and 7 and Figure 43, we
have the following properties:

e tiles crossed by a right-hand border only: 1014, at edges ¢—1 only;
2077, at edges 2—o only; 1013, at edges o—1 only;

o tiles crossed by a left-hand border only: 4707, at edges ©—7 only; 1106,
at edges 6—o only; 5707, at edges o—7 only;

e tiles crossed by one border only, when the left-hand border, when the
right-hand one: Gy, at edges 1—2 only; 1102, at edges 2—¢ only; G,, at
edges 7—6 only, 6077 at edges 6—¢ only;
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e tiles possibly crossed by two borders: F', always at both edges 1—2 and

7—6; 1015 at edges ©—1, when both, when one of them; 3707 at edges

©—7, when both, when one of them.

Next, we have the following property of the mid-point lines which we
consider:

Lemma 12 Consider two mid-point lines £, and Ly of tiling {7,3}. Recall
that we consider lines joining the mid-points of two consecutive edges of tiles
of the tiling. Then if 1 and l5 do intersect, they meet at the mid-point of an
edge of a tile.

Proof. Indeed, assume that ¢; and ¢, meet at a point A. On a mid-point line
of the tiling, any point is between two mid-points of two consecutive edges
of a tile, as can easily be seen in Figure 43. Let A; and B; be the such
points for ¢/; with respect to A and A, and B, for ¢ with respect to A too.
By construction of a mid-point line of the tiling, if A is inside a tile 7, A
and B; must be vertices of 7. It is clear that A, and B, must be the same
vertices as this happens also on the same tile. And so, this is impossible if
l1 # £y. Accordingly, A belongs to the border of a tile and, by construction
of a mid-point line, it is the mid-point of an edge of a tile. @

Now, if we look at what we observed on the tiles involved in borders, the
single possible meeting of two borders is the mid-point of the common edge
shared by tiles 3707 and 104, or tiles 4707 and 1o015.

Consequently:

Lemma 13 The border of a tree does not meet the border of another tree.

Proof. There is no tile which would allow to realize the meeting as the
only ones which can contain the intersection of two mid-point lines are the
parental petals of the root of the tree. m

What we proved on the border of a tree and of a sector also proves
Lemma 13. Figure 43 indicates that along a border, new trees appear, both
outside and inside the area of the tree. They are generated by the G's
and G, ’s tiles which periodically occur among the tiles crossed by the bor-
der. Tiles 39 and 101 are crossed by two borders and they illustrate both
situations. At the same level, other F-sons of a G-centre are further and,
indeed, they belong to different sectors. They belong either to a sector which
is outside the sector defined by the root of the initially considered tree, or
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they belong to a sector which is inside the area of the tree. In the first case,
as sectors define a partition starting from a given level, the property of the
lemma follows. In the second case, it is not difficult to see that the border
of a sector involves 8-centres which occur periodically along the border as
we go down along it. As 8-centres have only F-sons, these F-centres do
not generate trees. This is why, trees are rather 'far’ from such a border.
And so, using the levels we introduced in the mantilla, we can see that the
trees which are generated at the same level always occur in sectors which
have no border in common. Look at Figures 38 and 39 and at Figures 18
and 19. Also, Figure 43 contains two examples of the situation when borders
of different trees are closest at possible. Tile 39 and 101 are crossed by two
borders. Tile 39 is crossed by the right-hand border of the tree rooted at 2
and it is also crossed by the created left-hand border of the tree rooted at
tile 104. For tile 101, it is crossed by the right-hand border of the tree rooted
at 2 and also by the just now created right-hand border of the tree rooted
at tile 264 as the latter tree is inside the former. Note that this is the single
possibility for a tree to be so closed to another one. 'Old’ trees are indeed
very far from each other.
Now we get an important corollary of Lemma 13:

Lemma 14 In the mantilla, two trees have either disjoint areas or one area
contains the other.

Proof. Assume that we have two trees A; and A, such that their areas
intersect and that none of them contains the other. Let 7; be the root of A;,
i € {1,2}. Let 7 be a tile of the intersection. In the tree A;, there is a path
from 7 to 7 which consists of tiles of A;. As 7y € As, there is a last tile of
A; on the path, say o1, which meets the border of A,. As oy is on the border
of A,, there is a last tile of Ay, among those which are on the border from
o1 to Ty, say o9 which meets the border of A;. And so, oy contains both the
border of A, and the border of A;. Considering the triangle defined by 7, 7
and oy, the border of A; must meet the border of A;, a contradiction with
Lemma 13. ®
Now, we define the following notion:

Definition 5 A thread is a set F of trees of the mantilla such that:
(1) if A1, Ay € F, then either Ay C Ay or Ay C Ay;
(17) if A € F, then there is B € F with B C A, the inclusion being
proper;
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(1730) if A1, Ay € F with Ay C Ay and if A is a tree of the mantilla with
AL CAand A C Ay, then A € F.

Definition 6 A thread F of the mantilla is called an ultra-thread if it
possesses the following additional property:

(iv) there is no A € F such that for all B € F, B C A.

Lemma 15 A set F of trees of the mantilla is an ultra-tread if and only if

it possesses properties (i) and (ii) of definition 5 together with the following:
(v) for all A € F and for all tree B of the mantilla, if A C B, then
BeF.

Proof. Indeed, an ultra-thread satisfies (v). Otherwise, let A € F and B be
a tree of the mantilla such that A C B and B ¢ F. From (iii) we get that for
any tree C' of the mantilla such that B C C, then C' ¢ F. From Lemma 14,
if A C B, Ais a sub-tree of B and so, considering the path leading from the
root of A to the root of B, there are at most finitely many trees D of the
mantilla such that A € D C B. Note that if two trees D; and Dy of the
mantilla contain A, we have D; C Dy or Dy C Dy by Lemma 14. And so,
considering the biggest tree D between A and B with D € F, we obtain an
element D in F such that for all A € F, A C D. This contradicts (iv). And
so, if B is a tree of the mantilla which contains A, it belongs to F.

Conversely, if a set F of trees of the mantilla satisfy (i), (i) and (v), it
obviously satisfies (i7) and (iv). W

Accordingly, an ultra-thread is a maximal thread with respect to the
inclusion.

Note that the mantilla may possess ultra-threads and it may possess none
of them. Indeed, consider the algorithm of Figure 41 and apply the following
strategy:

e at time ty,, in step 3, for the choice of C, 1, we take an F-centre;

e at time t9,,7, in step 3, for the choice of C, 1, we take a G-centre,

choosing at random between a Gy- and a G ,-centre.

Then it is clear that the sequence constructed by C,, defines an ultra-
thread.

Consider now another execution of the algorithm of Figure 41 where the
strategy is now:

e at time %,, in step 3, take for C,; an 8-centre.
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Then as the sectors defined by C), are increasing sectors, all the threads
existing at time ¢,, have a maximal tree at some level with respect to C,. As
the sequence of flowers above €, do not contain the root of a tree, we have
that the maximal trees we define at time ¢, are not included in a tree, by
induction on the construction of sequence {C,,}. The tree which appear at
higher levels generate trees which are all outside the sector defined at time ¢,,.

Here are additional properties of the ultra-threads.

Lemma 16 Let U be an ultra-thread. Then, U = {A,}nez, where A, € U
foralln € Z and A,, C Any1, the inclusion being proper. We also have that
U A, = H?

neZ
Proof. By properties (ii) and (v) of the ultra-threads, there is a sequence
{Ch}nez such that C, C C,y; for all n in Z, the inclusion being proper.
As C, is a sub-tree of C), .1, there is a path which goes from the root of C,
to that of C,.;. Along these paths, there are finitely many trees of the
mantilla. By (v), these trees also belong to F. Accordingly, we obtain {A,}
by appending these trees to {C,}.

From our study of trees issued from a G-centre crossed by the border of
a given tree of the mantilla, we know that we have the following property.
If A and B are two trees of the mantilla with A C B, the inclusion being
proper, consider the set of tiles A" which is obtained by appending a layer of
one tile along the borders of A and outside A. Then, we have that A’ C B.

Now, fix a tile 79 in Ag. From what we just noted, we obtain that B; C A
and, by induction, that B, C A, where By, is the ball of radius A around 7.
Accordingly, Uz A, =H>m

ne

Lemma 17 Let U = {Aptnez and V = {Cplmez be two ultra-threads.
Then, there are two integers ng and mqg such that A, = C,, for all n and m
such that n — ng = m — my.

Proof. Indeed, consider A;. Then, as |y C, = IH?, there is mg such that
nezZ
Cpm, contains the root of Ay. Now, by Lemma 14, necessarily, Ay C C,,, and

50, Cpme € U by property (v) of the ultra-threads. This means that there is
no such that A,, = Cp,,. Now, by construction of {A,} and {C,,}, there is
no tree of the mantilla between A,, and A, and, similarly, between C,, and
Cpy1- Accordingly, A, +1 = Cpyo+1. By induction, we get A, 1k = Crgtk
forallk e IN. m
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5.3.2 The refined mantilla and its set of tiles

In order to define the computation areas, we need to define infinitely many
of them and, if possible, in a such a way that they do not intersect. We shall
start from the trees and, due to Lemma 14, it will be enough to prevent any
tree to embed another one.

The previous lemmas, especially Lemma 17, indicates that if a mantilla
does possess ultra-threads, morally it has a single one at infinity. Conse-
quently, we may view mantillas with ultra-threads as particular cases and so,
we shall restrict our attention to mantillas without ultra-threads.

Now, we define the following sieving procedure: as each thread has a
maximal element, we select this element which will be called the selected
tree and we erase all the other trees inside the selected tree. What we obtain
by applying this procedure is called the refined mantilla.

Now, we turn to the description of the tiles which are needed to construct
the refined mantilla. As previously, we deal with prototiles which are the
tiles which can be copied as many times as needed.

We define the new set of tiles as follows:

First we duplicate the set of tiles of the mantilla and we call one set the
orange tiles and we call the other the green tiles. We may imagine that
the tiles have a coloured background: orange in the first set of tiles, green
in the second. We shall consider that the orange tiles are involved in the
construction of the original version of the mantilla and that the green tiles
are involved to mark the areas of the selected trees of the refined mantilla.
The representation of these tiles are given, below, by Figures 45 and 48.

Next, we make a change in the orange tiles: we replace tiles with patterns
1014, 1015, 3707 and 4707 by similar tiles which bear a green mark on the
sides crossed by the border, see their representation in Figure 44, below and
also in Figure 45.

In the set of green tiles, we do not put marks, see Figure 48 again. As a
consequence, a tree cannot be built inside an area of green tiles.

Now, we define a new set of tiles for the border of the selected trees. These
tiles are illustrated by Figures 46 and 47, below. They have two parts: an
orange one and a green one. Both parts are separated by a piece of line which
materializes the border. In our sequel, we shall use the following convention:
we say that a border tile is orange or green depending on which colour the
central part of the tile is.

We can subdivide the new set into three parts.
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Figure 44 Tuwo selected trees in the refined mantilla. Note the green background
of the selected trees. Also note that tile 294 is an F-son of a G-centre but, as it is
inside a selected tree, it does not generate a tree.

The first part consists of three tiles. Their characteristic property is that
they are crossed at the same time by two borders which defines three parts
for the colouring of the background of the tile. First, we have the F'-tile
which is the root of a tree of the refined mantilla. It is a green tile according
to the above convention, but it has two orange parts corresponding to the
beginning of the two borders. Then we have two orange tiles with patterns
1lo15 and 3707 which have two small green parts. They correspond to the
case when two selected trees are very close to each other, because one of them
has its root very close to the border of the other. Tile 3707 corresponds to
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the case when the new tree is on the right-hand side of the older one. Tile
4707 corresponds to the case when the new tree is on the left-hand side.

pattern |lola | F (2077 |1013 | G, |1102 |3707 | G |[6077 1015 | G,
colour | or. | gr. |or. | gr. |or. |gr. |or. |gr. |or. |gr. |or
sides o—1 [1-2 |20 [o=1 |1-2 | 2—0 | o-T |7T-6 |6—0 [o—1 |1-2

pattern |g7o7 | F  |1166 |5707 | Gr [6077 |1015 | G, [1162 |3707 | Gr
colour | or. | gr. |or. | gr. |or. |gr. |or. |gr. |or. |gr. |or
sides | o=7 |7=6 |6—0 [o=T7 |7=6 | 6—0 |o=1 |1-2 [2—0 | o=T7 | 7-6

Table 8 The colours are orange for or. and green for gr.. They are the
colours of the central part of the considered tile. All tiles have two colours: a
smaller part is in the other colour. Above: for the right-hand border; below:
for the left-hand one.

The second part corresponds to the tiles which are involved by a right-
hand border. In the aperiodic part, besides the parental tiles of the root and
the F-centre which is the root itself, we have tiles 2077 and 1013. The first
one is orange while the second is green, see Figure 47, below. Then we have
the tiles for the periodic part. Here, we have six new tiles: Gy, 1102, 3707,
G,, 6077 and 1o15. All these tiles are crossed by a single border defining two
coloured back-grounds. Above, table 8 indicates which is the main colour of
each tile, according to the border where it is used, see also Figures 47 and 46.

The third part corresponds to the left-hand border. We have tiles 1106
and 5707 for the aperiodic part. They are orange for the former and green
for the latter. We have also six tiles for the periodic part. The patterns are
the same as previously, but the colouring is different: green and orange parts
are exchanged with respect to the tiles for the right-hand border.
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Figure 45 The 21 tiles of the shrunken mantilla.
Note the tiles which start the construction of a selected tree.

85



5 3/ 4 . -
& o 2077 , 1013
! L \ 3 1
2 1‘\\ .
4 Gy \ 1102 N T e
5 \
1\

// 1 ,,//
g 6077 o lolb

Figure 46 The 9 tiles of the right-hand border of a selected tree.

First, the 3 tiles of the aperiodic part of the border: an F-centre and then two
of its petals: 2077 and 1031.

Second, the periodic part: three tiles belonging to the shrunken mantilla: tiles

G’ga 31701'% and 6077; three tiles belonging to the area of the selected tree: 1102, 6077
and 1ol5.

Note that tile 3707 also starts another selected tree.

1% 1 \ 5
\\\¥7747 F \77! 1106 \\¥77!’/ 5707
1 £ | 4
2 1 /
\,A, 7 Gr N4 6077 N A lolb \ 7477 Gy
1 \ 3

N 2 // \ ,x’/
o 1102 N g 3707

Figure 47 The 9 tiles of the left-hand border of a selected tree.
First, the 3 tiles of the aperiodic part of the border: the F-centre, again, and
then two of its petals, this time: 1106 and 5707.
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Second, the periodic part: three tiles belonging to the shrunken mantilla: tiles
G,«a 1<;1? and 1102; three tiles belonging to the area of the selected tree: 6077, Gy
and 3707.

Note that tile 1015 also starts another selected tree.

1013 1103 11027F 1106T
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Figure 48 The 21 tiles of the inside of the selected tree.

Note that the tiles are obtained from the set of 21 tiles for the shrunken mantilla
by simply changing the background of the tile, four tiles being excepted: tiles 3707,
1014, 4707 and 1015. The new tiles have the new background but they no-more

bear the marks of another part of the tiling. As a consequence, no tree can be
created in this area.

Next, we modify the algorithm of Figure 41 as follows. In step 1, we do
not pick at random a tile from the set of all tiles but only in the set of the 21
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modified orange tiles. Later on, we call the modified algorithm algorithm
for the refined mantilla.

Lemma 18 The algorithm for the refined mantilla always produces a real-
wzation of the refined mantilla. It exactly yields all the possible solutions of
the refined mantilla.

Proof. It is straightforward and it runs as the proof of theorem 3. In particu-
lar, there is no need to change the wording of Step 3 in Figure 41. However, it
is worth noticing that the difference with theorem 3 lies in the application of
the algorithm. In the case of theorem 3, consider the first action in Step 3. It
consists in chosing at random the parental tiles of C;,, among what is possible.
When C, is an F-centre, it may happen that this choice yields a G-centre,
which means that a new tree is created. In the case of the refined mantilla,
this must be ruled out. Otherwise, the trees being present in X, would be
contained in the tree created at time ¢, ;, which violates the definition of a
refined mantilla: it contains no ultra-thread. However, this never happens in
the case of the algorithm of the refined mantilla. Indeed, the centre induced
by the choice of the parental tiles at time ¢,,; is always an orange tile.
Assuming that this is the case for C),, it is clearly the case for C,,; when
C, is a G- or 8-centre. When C,, is an F'-centre, we first remark that there
is a single orange F'-centre in the set of prototiles. Next, we note that the
petals which give rise to an F-son in a G-flower are 3707, or 1014, or 4707
or 1015. There are six of them in the set of prototiles and all have a small
green part in contact with the edges 1 and 7 of the F-centre. As an orange
F-centre has no green part, the above petals cannot match with it. And so,
when C,, is an orange F'-centre, the possible parental tiles are those for an
F'-centre or for an 8-centre. This means that the number of possibilities for
a random choice is six instead of eight for the ordinary mantilla. This is not
really a big change from the point of view of the number of solutions.

The above argument shows that with respect to X, new trees created in
Yin+1 are either in the continuation of X, but at a deeper level, or rooted in
Y1\ Xn but not containing any tree of X,,. And so, the algorithm produces
a refined mantilla, i.e. without ultra-thread.

The proof that all the realizations of the refined mantilla are produced is
as in the proof of theorem 3: the algorithm works in checking mode. m

Before turning to the simulation of the computation of a Turing machine,
we want to stress on a very important property.
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It was foreseen by Robinson in his solution of the partial problem, see
[29]: it may happen that the universality problem and the aperiodic one are
there not related while they are closely related in the Euclidean case. Indeed,
we have the following result.

Lemma 19 There are infinitely many realizations of the refined mantilla
which are periodic.

Proof. Consider a G-centre A. We may assume A to be the first sector con-
structed by the algorithm for the refined mantilla. Accordingly, the F'-son
of A is the root of a selected tree. We note that the sons of a flower define
a partition of the sector. Consequently, when we remove a selected tree,
this does not affect the other sectors at the same level of the spanning tree
for the mantilla. Now, in terms of petals, only two non-parental petals are
concerned by the creation of the selected tree. The other non-parental petals
are connected to the parental ones and they are the parental petals of the
other sub-sectors: again two G-sectors and also two 8-sectors. Consequently,
by an easy induction on the levels of the spanning tree of the mantilla split-
ting, we can see that what remains from the sector when we remove the tiles
belonging to the areas of all selected trees sons of the sector is a connected
set, of tiles.

In particular, the G-centre which is over the root of a selected tree is
connected to A by a path which does not meet any selected tree. Also the
path goes always from a tile which belongs to one level to a tile belonging to
another level or which is the centre to which the previous tile is attached.

Consider such a path from A to B, another G-centre. We may assume
that we have taken for B the same kind of G-centre as the kind of A. In this
case, as the construction of the tree downwards is deterministic, this path
will be repeated if we go downwards beyond B. Now, we can take the reverse
path when we choose a new C,, in order to tile the plane in steps 3 of the
algorithm. This will leads us to a tile C' and the relations between C' and A
are in all respects those between A and B. Consequently, starting from C,
we may again apply the same reverse path. By the end we obtain a periodic
tiling: it is invariant under the shift along the mid-point line defines by the
mid-point of edge 1 of A and the mid-point of edge 1 of B.

This construction is valid for any choice of B and there are infinitely
many of them. W
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The property is perhaps more striking by the following fact: the converse
of Lemma 19 is true, as proved by the following lemma.

Lemma 20 There are countably many periodic realizations of the refined
mantilla.

Proof. First, we note that the construction which we indicated in the Lemma 19
is not the single one. We can repeat it mutatis mutandis with an F- or an
8-center. Each time, we shall get another tree and indeed, different periodic
realizations of the refined mantilla.

From what we already established, assuming that we have a period, 7.e. a
shift under which the considered realisation of the refined mantilla is periodic,
it is enough to show that the line of the shift goes inside the sector defined
by a a certain flower. Denote by X,, the sector headed by a centre M.

Assume that the considered realisation is invariant under a shift o along
a line £. Let G be a G-flower giving rise to a selected tree as close as possible
to £. From the splitting property of the mantilla, ¥ and ¥, are either
disjoint of one of them contains the other.

If one contains the other, we are done and this realisation belongs to one
of those which are depicted by Lemma 19.

Assume that the sectors are disjoint.

From the construction of the mantilla, there is another sector X4, headed
by a flower @, such that X contains both ¥¢ and X,y. Now, by the
properties of a hyperbolic shift and as the tiling is invariant under o, it is
not difficult to see that ® and o(®) are the same kind of centre. As ¥g
contains both G and o(G), we get that o(X) contains both o(G) and 0?(G)
and so, 0(G) € L No(Xe).

As distinct sectors are either disjoint or embedded, we obtain the inclusion
Y C 0(Xe) or the opposite: o(Xg) C Yo.

And so, the lemma is proved. W

Note that the tilings constructed in Lemma 19 share the following prop-
erty: for any pair of disjoint G-sectors X, and Xg,, there is a third one X,
which contains both of them. If we consider an F'-centre F;, and we take the
shift which transforms this centre in its left-hand son F7, it is not difficult to
see that X, is disjoint from X, where G, respectively G, is the left-hand
G-son of Iy, respectively Fi. Then it is not difficult to see that in the peri-
odic tiling generated by the shift which transforms Fj into Fj, ¥, and X,
are not contained in any sector ¥, when M is a G-centre.
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Still about this property of periodic realizations of the refined mantilla,
we can indicate some remarkable constructions which are illustrated by Fig-
ure 49, below.

A line of Gy-centres:

Start from a G, centre A. Take its left-hand Gy-son B. Let £ be the
line which passes through the mid-points of the edges 7 and 5 of A. This
line is also a line of mid-points but it is different from those which we
consider in this report. We shall see another one in the second example
of a periodic solution only. Indeed, this line joins the mid-points of two
sides of an heptagon such that two end points of these sides are the
vertices of a third edge of the heptagon. It is not difficult to see that
in the tiling {7,3}, this property is observed for all heptagons crossed
by such a line. In particular, as can easily be seen in Figure 19, ¢ also
crosses the edges 7 and 5 of B. This defines a period along ¢ and B is
the image of A under the corresponding shift along ¢. We may remark
that the bisector of edges 6 of A and B are both perpendicular to £.

A line of F-centres:

Start from an F-centre A. Take its left-hand F-son B. Let m be
the mid-point line which cuts the edges 7 and 5 of A. This line is again
a line of mid-points of the same kind as ¢. From Figures 18 and 34,
we can see that after A, m cuts the petal 5707 at the mid-point of the
first edge 7 after edge 5 of the petal and then it crosses B at the mid-
points of its edges 7 and 5. This defines the period along m and the shift
along m defined in this way transforms A into B. We may remark that
the bisector of the edges 6 of A and B are both perpendicular to m.

A line of 8-centres:

Start from an 8-centre A. Take the bisector p of its edge 4 which also
passes through the red vertex of A. Consider the F-son C of A whose
parental tiles are the tiles 1570 and 1470 of A. Let B be the 8-centre
defined by C whose red vertex is shared by the petal 1470 of A. Then p is
also the bisector of the edge 4 of B. This defines the period along p and it
also defines a shift along p which transforms A into B. By construction,
the edges 4 of A and B are both perpendicular to p.

A half-plane solution:

Consider again a Gy-centre A and assume that it is an orange tile at
the border of a selected tree. As A is an orange G-centre, we know that
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Figure 49 Periodic realizations of the refined mantilla.

Above: on the left-hand side, the period is generated by a mid-point line of G-
centres. On the right-hand side, it is generated by a mid-point line of F-centres.

In both cases, the mid-point lines are of the kind joining mid-points of non
contiguous sides.

Below: on the left-hand side, the period is generated by a line of 8-centres. On
the right-hand side, a half-plane solution, here defined b;z/ Gy flowers at the border,
but outside the selected half-plane. There is another such solution with G, flowers.

it is on the right-hand border. We also know that the border is mate-

rialized by the ’ordinary’ mid-point line ¢ which cuts its edges 1 and 2.

Looking at the ultimate periodicity of the border, we know that G, be-

longs to the periodic part of the border and we know that the periodic
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part goes downwards. When completing the refined mantilla starting
from A, if the right-hand border goes on, it goes along ¢ again. We may
decide to put a G,-centre C' at the parental petals of A or to put an
F-centre. In the latter case, the F-centre defines the root of the selected
tree whose right-hand border is materialized by ¢. In the former case,
we may also decide to put again a Gy-centre at the parental petals of C.
If we go on this alternation of G- and G,-centres, we get that the se-
lected tree becomes a half-plane: it is the limit case of a tree whose root
is removed to infinity. It is not difficult to see that the period between
two consecutive Gy-centres along ¢ defines a shift which leaves the tiling
invariant. The half plane is also invariant under the shift.

Call shrunken mantilla the set of tiles which we get when we remove
all tiles belonging to a selected tree. From the argument of the proof of
Lemma 19, we derive another property of the refined mantilla:

Lemma 21 The shrunken mantilla is a connected set of tiles.

Proof. Consider ¥, the sequence of modified sectors constructed by the al-
gorithm for the refined mantilla. Define X! as the complement in ¥, of all
tiles belonging to a selected tree rooted in X,,. Then, by repeating the in-
duction argument of the proof of Lemma 19 which is based on the levels of

the mantilla we have that each X! is connected. Now, as U %, = H?, we
nelN

have that (J X, is the shrunken mantilla. Accordingly, as ¥, C 3], ;, the
n€IN
shrunken mantilla is also connected. Note that from the proof of Lemma 19

and from the present argument, connectivity can be understood as the pos-
sibility to join any pair of tiles by a path of tiles which all lie in the shrunken
mantilla. |

Now, we state another important property of the shrunken mantilla.

Lemma 22 For any tile 7 of the shrunken mantilla, there is a G-flower at
a distance at most 6 from T.

Proof. Obvious from the figures of the splitting of the sectors, see Figures 18,
19 and 20. m
5.3.3 The delimitation of the computing regions

Now, we turn to the description of the tiles which delimit the trees in which
the computation will proceed.
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Before turning to the description of the prototiles used for the computa-
tion, we have to indicate how the computation is handled in connection with
the algorithm of construction of the tiling.

Previously, we indicated that the computation of the partial problem will
be put in the selected trees of the refined mantilla. This is true, but this does
not necessarily mean that the border of the selected tree is also the border
of the computation area.

Let us see why this cannot be the case. Assume for a while that the border
of the selected tree is also the border of the harp. From the working of the
algorithm for the refined mantilla, a border tile 5 may be chosen at random
and, in particular, it may turn out to be a computational tile, far away from
the beginning of the computation while the computation did not yet started
because [ is the first tile of the tree in our process of construction. Of course,
as a placed tile cannot be removed, we may refrain to place S until we may
actually start the computation. Then, at some point, we find the exact place
of 5 and we put it. There are two objections. First, a mild one is that it
may happen that we shall never find a place for 5 as § may turn out to be
never used in the computation which we are simulating. As the reachability
problem is undecidable for Turing machine, we cannot do otherwise than put
aside 8 until we find its place. We shall have to return to the processing of
such a case in the final algorithm. Second, and this is a serious objection, it
may turn out that in the construction of the tiling, we shall find a border of
a half-plane and not of a selected tree. In this case, as we are waiting for the
root of the selected tree, the algorithm will simply not tile the plane. And
the fact that this happens with a very low probability if not probability 0
changes nothing.

This is why the computation area does not coincide with the selected
tree in our setting. In fact, it will be a subtree inside of the selected tree.
The complement of the computation area inside the selected tree is called the
shield. It is not difficult to see that as we put the computation area inside the
selected tree, the shield has two parts connected by the root of the selected
tree: one part lies between the left-hand border and the computation area
and the other lies between the computation area and the right-hand border.
And this is enough to answer the above question. If we find a border tile 3,
it will be a tile of the shield. We may place it as it does not bare any
computation. Later, the final algorithm will contribute to fill up the shield
in such a way that if the root of the selected tree is never found out, the
resulting half-plane will nonetheless be constructed by the algorithm.
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Figure 50 The insertion of the harp, in blue, inside the selected tree, in green.
On the right-hand side of the selected tree with numbered tiles, note another se-
lected tree at three tiles on the right-hand side of tile 33. This new selected tree is
generated by the G¢-centre which is adjacent to tiles 4 and 12.

Accordingly we shall get a complete tiling.

This also answers the mild objection. As we shall soon see, the construc-
tion of the computation area always start from the root and so we are never
faced to the situation which is considered in the mild objection.

The situation of the computation area, now call it the harp, is depicted
by Figure 50, above. As seen in the figure, the root of the harp is a son of the
root p of the selected tree, it is its middle son in the sense of the Fibonacci
structure. It is delimited by two mid-point lines. The left-hand border of
the harp is defined by the mid-point ray v which starts from the mid-point
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of edge 3 of p and which passes through the mid-point of edge 4 of p. The
right-hand border is the mid-point ray ¢ which is the reflection of v in the
support of edge 3 of p.

As the new name suggests it, we implement the description of section 4.1
in the harp placed in any selected tree of the refined mantilla.

5.3.4 The final set of tiles

Now, we turn to the description of the final set of prototiles for our problem.

As previously, the set of prototiles splits into several subset. The first
subset is the skeleton which allows to construct the shrunken mantilla. And
we know from Lemma 21 that the shrunken mantilla is a connected set of
tiles.

The skeleton contains the previous set of 21 orange tiles in which four
tiles have a small green part in their background, see Figure 51, above. It is
the tiles with pattern 4707, 1015, 3707 and 1014, respectively. By definition,
the skeleton is the set of tiles which can be used in step 1 for the choice of
the first tile. As we wish that the first tile could be any tile of the shrunken
mantilla, we have to append the orange tiles of the border of the shrunken
mantilla with the selected tree. We know that these orange tiles have also a
small green part, due to their border position. It is the tiles: 1106, G, 1015,
1102 of Figure 53 and the tiles: 2077, G, 3707, 6077 of Figure 54. Also, any
tile of the skeleton will be used infinitely many times, as proved further.

The second subset of tiles consists of the tiles for the inside part of the
shield. They are copies of tiles @ and @ of Figure 23. We just change the
colour of the background which is green as we are inside a selected tree.

This set matches with the third subset of prototiles which has more pro-
totiles and which is the set of tiles for the border of the shield with the
shrunken mantilla.

First, we have the root p of the selected tree which bears all the marked
sign of an F-flower, see Figure 52. Its background is green and so, it belongs
to the shield. Also, it has three smaller parts in other colours: two are in
orange to match with the orange tiles of the shrunken mantilla. One is in
blue to match the starting part of the root of the harp. Then we have the
left-and right-hand sons of p. These sons of p have also three colours for the
background. Their main part is green as they belong to the shield, but they
have a blue part to match with the root s of the harp and an orange part to
match with the shrunken mantilla. They also have numbered marks:
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Figure 51 The 29 tiles of the shrunken mantilla.
Note the tiles which start the construction of a selected tree.
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Also note the orange tiles of the borders with the shield of a computing area.

5\ 1\“
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Figure 52 The 5 tiles of the shield.
Above, in the middle, the root of the shield. The tile is called by tiles 1014, 1015,
3707 and 4707 of the shrunken mantilla. Note that tiles 5707 and 1013 are changed

Below, the two tiles inside the shield. The border with the shrunken mantilla and
with the harp is displayed below.
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Figure 53 The 9 tiles of the border between the shrunken mantilla and the left-
hand part of the shield.

Above, we have the aperiodic part; below, the periodic part.

Note that only 3 tiles are new: the new 6077 Gy and 3707. Note that these tiles
do not bear a?l the numbered marks of standard tiles as they belong to the shield.
They also lost their red-vertex for the same reason.
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one mark replicates the mark of the edge of p at which they abut; the other
mark reminds the petal numbering and is used to easily place the tiles of the
border which are in the shield.

The other tiles of the border have this latter characteristics: they still
bear two marks from the mantilla tiles in order to match with the tiles of the
shrunken mantilla. Indeed the border tiles of the shrunken mantilla still bear
all their numbered marks when they are orange tiles. The border tiles of the
shield exactly reproduce the periodicity observed when defining the tiles of
the refined mantilla. This requires to partially use the numbered marks. It
is needed for the edges close to the border only: the third number which is
deeper inside the tree is no more useful. It is also removed, to match more
easily with the Fibonacci tiles. This subset of tiles is illustrated below in
Figures 53 and 54.

- . O

2\ 2\ 1\

’ ] S N 2077 , ] T3
2 | \ \
\3 5~ 2 N\ /
24 Yg, / 1 N & e / 1 S G,
‘
1)
6Tt {7 1 77,\/1015

Figure 54 The 9 tiles of the border between the shrunken mantilla and the right-
hand part of the shield.

Above, we have the aperiodic part; below, the periodic part.

Note that only 3 tiles are new: the new 1102, G, and 1lol5. Note that these tiles
do not bear all the numbered marks of standard tiles as they belong to the shield.
They also lost their red-vertex for the same reason.

The fourth set of tiles is the borders between the shield and the harp. We
take tiles @, @, @, @ and @ and we modify them as now described.
First, they have mainly a blue background but they have a small green part
to match with the tiles of the shield. We shall say that they are blue tiles
and we consider them as belonging to the harp. Next, tiles which are alike
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tiles @, @ and @ have Fibonacci marks on the border sides: they have to
match with the Fibonacci marks of the shield as they globally belong to the
same selected tree. Accordingly these tiles have a green Fibonacci mark on
the right-hand side topmost edge and the next edge, clockwise going, bears
a light purple mark to a tile of the shield on the next level.

‘7 SEERY 2
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P Ve T N € Ve

Figure 55 The tiles of the borders between the shield and the harp.
Above, we have the aperiodic part; below, the periodic part.

It is important that the border maintains the lateral connections repre-
sented by the green marks: they indicate the levels of the Fibonacci trees.
They allow us to harmonize the levels between the harp and the shield in
order to define unique levels in the selected tree itself.

The fifth set of tiles is the set of tiles of the harp, border excluded. Here,
we just changed the background of the tiles: now, it is blue. As in the case
of the harp, these tiles as well as the border tiles which are mainly inside
the harp are prototiles of prototiles. They bear the supports for the Turing
signal but they have not the exact indication of states or tape symbols. The
prototiles are obtained from these tiles by putting all possible marks of state
and tape symbol corresponding to the instruction table of the simulated
Turing machine. However, for the counting of the number of tiles, we only
count the prototiles of prototiles for the Turing signals. We just note that
tiles which are alike tiles (¢)and (7 )have a similar one in the subset of tiles
for the borders of the harp with the shield. In the border situation, there is
only one possible kind of Turing signal for a state in a tile of type @: the
signal must go back to the right. But it is enough to have this kind of tile
for the border, as illustrated by the third tile of the first row of Figure 56,
and not the tiles alike to @ for instance.
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Figure 56 The tiles for the harp and its computation.
The first row indicates the left-hand border of the harp.
The second row indicates the right-hand border.

The third row indicates the tile for a passive propagation of the signals: for the
state, for the content of the squares of the tape.
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The fourth row implements the transition. The continuation of the new signal is
indicated by the first two tiles of the fifth row.

The last two tiles of the fifth row indicates the tiles for the back ground of the harp.
The tiles of the sizth row indicates the tiles for the halting.

Note that we already met some of the present tiles but without the Turing signals.

Taking into account all what we up to now listed we obtain that the set
of prototiles contains 64 tiles.

5.4 The algorithm, revisited

We revisit the algorithm for the refined mantilla and that of Figure 41.

Now, in step 1, we require that the first tile should be taken from the
skeleton, exactly as in the algorithm for the refined mantilla.

Steps 2. and 3. are modified in order to take into account the new
properties of the border between the shrunken mantilla and the shield of the
selected tree.

In both cases, in the process of completing a sector, we have to take
into account that the sector constructed by the algorithm may meet several
selected trees. There are two situations: either the root of the selected tree
is already placed or it is not.

In the case when the root of the selected tree is already placed, there is
indeed little to do. As the computation goes on downwards, it is deterministic
and the single point is the growth of the tiled area inside selected trees. The
easiest way is to follow the levels of the Fibonacci tree inside selected trees
in place of following levels of the mantilla.

Of course, there is a discrepancy. As can be noted in Figures 38, 39
and 40, mantilla levels are larger than Fibonacci ones. Locally, a mantilla
level can spread over three Fibonacci levels. From this, we easily deduce
that level n of the mantilla reaches at most level 3n of the Fibonacci tree,
the extremal value being reached, if we assume that levels 0 are the same
for the mantilla and for the tree at the root of the tree. Accordingly, as a
Fibonacci tree of height h has a level h of length K", where K > 1, indeed
K is the square of the golden mean, we conclude that if L is the length of
the Fibonacci level A, the level reached by the mantilla level which coincide
with A on the borders of the tree reaches a Fibonacci level which is M log L
deeper than the level of A\, where M is a positive constant. In this argument
we assume that the mantilla level which coincides with A on a border of
the tree also coincides with A on the other border. This is true because a
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selected tree is symmetric under the reflection in the axis of the F'-sector
which generates the tree. Remind that this axis is also the bisector of edge 4
in an F'-centre. It is also obvious from Figure 18 that an F'-sector is invariant
under this reflection.

If the root of the selected tree is not already placed, it may happen that
we deal with a half-plane and not with a selected tree. Accordingly, we have
to grow up the tiled area of the shield in a way which does not lead to a
contradiction. Taking into account that the process is deterministic as we
go downwards, each time a new tile v of the border is placed, the algorithm
fills up the tree rooted at v down to the current level inside a selected tree.
In this way, we obtain what would be developped if the root were already
placed but no more.

Accordingly, consider the case when a new sector is determined at step 3
of the algorithm and that we have a shield border without root. Let a be the
upmost tile of this border at this stage of the construction, just before time
tn+1. The algorithm places the tiles defined deterministically by the choice
of C,, 41 until they meet the continuation of the border above a. Then we go
along this border tile by tile starting from a. Each new tile is determined by
the new sector. If it is still the continuation of the border, the algorithm fills
up the corresponding tree after up-dating what corresponds to the change of
level induced by the new sector 3,.; lead by C,,,. If it is a root p of the
selected tree, then the harp can be constructed up to the level defined by
Ynt1- If the new sector still brings a tile above p, then we can construct the
continuation of the shrunken mantilla on the other side of the selected tree
rooted at p and we can again go down to the required level of the mantilla
thanks to the remark on the symmetry of the selected trees. If, when placing
the root, it happens that the new sector does not bring in a tile of the mantilla
above the root, we just construct the harp with its right-hand side border and
we wait for the next sector, 3,5 in order to construct the right-hand part of
the shield and the continuation of the shrunken mantilla over the right-hand
border of the selected tree. If during this process we have only continuations
of the border, when the time for C), 5 is reached we have constructed a far
larger part of the shield. Also, this appending of trees at each step guarantees
that the new X,.; also contains B, if B, was contained at the previous
step: it is plain that a new layer of at least one tile is put uniformly on the
previous border of ¥,,. Consequently, if the root is never found, the unrooted
shield will converge to a half-plane which will be covered by the algorithm.

We may consider the case of a half-plane as a limit case of selected tree:
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the root of the tree is moved to infinity and, as a consequence, the harp is
thrown away, beyond the points at infinity of the hyperbolic plane.

And so, the modified algorithm always construct a solution, provided that
the simulated Turing machine does not halt. We also obtain that all the tiles
of the skeleton are used infinitely often.

Now, it is not difficult to see that if we have a solution, picking at random
a tile in the shrunken mantilla and taking it as the tile chosen at step 1, we
again obtain this solution by running the algorithm in checking mode.

Accordingly, we proved the following result:

Lemma 23 The algorithm of Figure 41 modified by the indications of sec-
tion 5.4 yields all the solutions of the generalzed origin-constrained problem
for the refined mantilla in the case when the simulated machine does not halt.

Taking into account the remarks of the beginning of section 4.2.1, in
particular the fact that the tiles of the skeleton are used infinitely many
often and the density property indicated by Lemma 22, we proved the main
result of this report:

Theorem 4 The generalized origin-constrained problem of tiling the hyper-
bolic plane defined by the conditions (i) and (ii) of the introduction is unde-
cidable. The set of prototiles of the proof contains 64 tiles, 29 constituting
the skeleton of the construction. This set of prototiles has the property that
when the simulated Turing machine does not halt, among the continuously
many possible realizations of the tiling, countably many of them are periodic.

Before turning to another application of our construction, we may note
the following property of the skeleton:

Lemma 24 There is a slight modification of the algorithm defined in lem-
ma 23 such that starting from the skeleton alone, the algorithm constructs a
realization of the shrunken mantilla. The modified algorithm also yields all
the possible realizations of the shrunken mantilla.

The modification consists in the fact that the algorithm knows that the
tiles 3707 and 1015 are necessary connected with the border tiles 6077, 110
of Figure 53 and the tiles 2077, 1102 of Figure 54 respectively. This is forced
by the whole set of prototiles with the algorithm of lemma 23. If the other
tiles of the border are not present, then the matching can be done with the

104



ordinary tiles. An alternative solution consists in appending specific marks to
the considered tiles. It will be a redundent information for the algorithm of
lemma 23 but the same algorithm applied to the skeleton only will provide the
shrunken mantilla. A third solution, which allows us to apply the algorithm
of lemma 23 is to append new tiles to the skeleton: all the tiles which have
an orange part. In this case, the other tiles of the border allow us to obtain
the correct matching of the orange tiles of the border without additional
mark or without putting the corresponding information in the memory of
the algorithm.

6 Nonrecursive tilings

In this section, we apply the method of [9] to prove the result of [9, 24] for
the hyperbolic plane, namely:

Theorem 5 There is a finite set of prototiles S such that there is a nonre-
cursive way to tile the hyperbolic plane using copies of the tiles of S and that
any recursive method to tile the hyperbolic plane starting from S will fail.

Before turning to the easy proof of theorem 5, we make a detour through
the notion of carpet which we already mentioned.

6.1 Coordinates

Up to now, we used coordinates for tiles just in a few pictures, see Figures 18,
19, 20, 21, 22, 24, 38, 39, 40, 43, 44 and 50. In these figures, we use the simple
coordinates introduced in [12] and which we remembered in section 2.3.

As mentioned in the introduction, in [18], I introduced a new system of
coordinates which can work both for the pentagrid and for the heptagrid. It
is attached to the notion of carpet to which we referred when we constructed
the mantilla.

Consider the heptagrid. As we know and as shown in [18], we define
a sequence of increasing angular sectors defined by lines of mid-points, see
Figures 4 and 6, whose union is the whole hyperbolic plane. We may fix
the choice of the sectors in such a way that the head of each sector is the
middle son of the head of the next sector, looking downwards. Now, we can
number these sectors using integers in Z and then, using the coordinates of
section 2.3 and [12] in each part of the tree which is not covered by the next
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sector. In this way defined in [18], a couple of integers is attached to each
tile as its coordinate. In this section, we assume that this system is defined
for the tiles of the refined mantilla, considered as tiles of the heptagrid.

6.2 Recursive and nonrecursive tilings

Accordingly, a finite set of prototiles 7 = {71, ..., Ty} being defined, we say
that a tiling is recursive if there is a total recursive function f on IN x IN
such that f(i,7) = h with A € {1..k} and tile Ty, ;) is placed on the tile of the

heptagrid with coordinate ((—1)"med? [%J ,7), using the well known encoding

of Z by IN in which negative numbers are encoded by odd numbers.

It is not difficult to see that among the solutions of the refined mantilla
given by the algorithm defined in section 5.4. there are nonrecursive solutions
as there cannot be more than countably many recursive tilings: although
they cannot be enumerated, as total recursive functions cannot be, they
constitute a subset of partial recursive functions which, as well known, can
be enumerated.

Transporting the construction of [9, 24] to the refined mantilla, we can
explicitly construct a finite set of prototiles which can tile the hyperbolic
plane, only in a nonrecursive way.

The idea is to transport the construction into the harp. There is just a
little adaptation. In order the reader could clearly understand the construc-
tion, first we remind Hanf’s construction.

The idea is the following: a Turing machine contains in its program the
computation of two total recursive functions f and g which enumerate two
recursively enumerable sets, A and B respectively which are supposed to be
infinite, disjoint and recursively unseparable, see [25]. The machine has a
semi-infinite input tape which is read-only and whose cells have coordinates
in IN denoted by c¢(n). The machine performs the loop of Figure 57.

It is not difficult to implement this machine in the harp. Remember that
all the levels of the Fibonacci tree intersect the rightmost branch of the harp
exactly once: the level 0 at the root, the level 1 at the rightmost son of the
root and so on. We again consider that the machine works on a semi-infinite
tape materialized by the rightmost branch of the harp. We shall call even
chords the chords of the harp which are issued from a cell of the rightmost
branch with an even level. Similarly, we call odd the branches issued from
the cells of the rightmost level with an odd level. We consider that the
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even chords are devoted to the input tape of the above Turing machine.
Accordingly, once the corresponding tiles are put on the rightmost branch,
the information which they contain is never change along the corresponding
chord, whatever the moves of the head of the machine are. Similarly, the
odd chords are used by the head of the machine to perform the required
computations and then the reading of the appropriate cell of the input tape.
1:=0;
loop
compute g(i);
look at cell ¢(g(7)) of input tape;
if ¢(g(7)) contains 0, exit;
compute h(7);
look at cell ¢(h(7)) of input tape;
if ¢(h(7)) contains 1, exit;
1= 1+1;
end loop;
stop;

Figure 57 The loop performed by the program of the Turing machine.

Once this has been precisely indicated, the needed details are easy to be
provided. Accordingly, theorem 5 is proved. Note that it is proved both in a
partial variant and in a generalized one thanks to the construction described
in the report.

7 Conclusion

As a conclusion, we cannot say at the present moment how far this solution
is from the solution of the general problem. If the general problem turns out
to be decidable, the present solution will be an optimal one if not the best
which could be done. If the general problem turns out to be undecidable, it
is difficult to say whether we just need a slight improvement or completely
different new ideas.
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