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In [14] Wolfram introduces his “Principle of Computational Equivalence” (PCE)
which seems to suggest that a certain class of computational processes obeys a
0/1 law: these processes are either decidable or complete. More precisely, unless
a process is decidable it is already computationally universal. Thus, Wolfram’s
principle coexists uneasily with classical recursion theory and in particular the
well-developed theory of recursively enumerable degrees, see for example [9].
Since Wolfram relies heavily on discrete dynamical systems such as cellular
automata in his approach it is interesting to search for restricted classes of CA
and/or alternative notions of universality where a computational classification
produces only two classes.

A first formalization of Wolfram’s heuristic classification of cellular automata
[13] was suggested in [5] where it is shown that the Wolfram-Culik-Yu classes
are all undecidable. The classes are located in the arithmetic hierarchy in [10].
In particular it is shown there that testing whether a one-dimensional cellular
automaton has only decidable orbits on finite configurations is Σ3-complete.
See also [1] for a critical analysis of frameworks for the classification of cellular
automata.

Since cellular automata are naturally discrete dynamical systems rather than
models of computation some care has to be taken to avoid awkward input/output
conventions. Indeed, it is desirable to find a definition on complexity that avoids
coding conventions altogether. In the realm of Turing machines a coding-free
approach to universality was suggested by M. Davis in the 1950’s, see [3, 4].
More precisely, a Turing machine is Davis-universal if the collection of all IDs
appearing in finite computations is r.e.-complete. The class of universal Turing
machines is strictly contained in the class of Davis-universal machines, and one
can recover input/output universality from Davis’ concept.

For a cellular automaton ρ it is thus natural to similarly consider the complete
orbit

Orbρ = { (X,Y )
∣

∣ Y = ρt(X), t ≥ 0 }
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where all configurations are finite. We then use the Turing degree of Orbρ as
our measure of complexity of ρ. More precisely, for any r.e. degree d let

Cd = { ρ
∣

∣ deg(Orbρ) = d }.

Thus, C∅ is the class of all CA with decidable orbits, corresponding to class III in
the Wolfram-Culik-Yu hierarchy whereas C∅′ is the class of all computationally
universal cellular automata.

In light of the Cook-Wolfram proof of the universality of elementary cellular
automaton number 110 one might argue that in general configurations with a
finitary description ought to be considered. The universality proof for rule 110
e.g. relies heavily on almost periodic backgrounds: configurations of the form
ωxyzω are required for the simulation of cyclic tag systems which lies at the
heart of the argument. Note that for a fixed rule the existence of undecidable
orbits depends on the spatial period of the background configurations under
consideration. Indeed, it is undecidable whether a fixed automaton admits
undecidable orbits for almost periodic configurations of sufficiently high period,
see [11].

At any rate, one can show that Cd 6= ∅ for any r.e. degree d, so the classification
is non-trivial. As are result, the structure of the upper-semilattice of r.e. degrees
is inherited by the orbit-based classification of cellular automata. The latter
semilattice is known to be extraordinarily complicated; e.g., its degree is ∅(ω).
Membership in Cd is Σd

3 -complete, so that C∅ is Σ3-complete whereas C∅′ is Σ4-
complete. This conforms well to one’s intuition that it should be more difficult
to pinpoint universality than “simplicity”. Similar results hold for the analogous
cumulative hierarchies C≤d and C≥d, see [10, 12].

We show that reversibility is not a suitable restriction in the sense of PCE: every
class Cd contains a reversible CA, see also [6, 2, 7]. Nonetheless, information
hiding of sorts (or rather: the lack thereof) seems to be crucial to Wolfram’s
claim; after all, the standard construction of two incomparable r.e. degrees fails
in the sense that the disjoint union of the two sets is complete, see [8].

Changing the basic notion of computational reducibility is also unlikely to pro-
duce a simplified hierarchy. Recent work by Simpson has shown that if one
adopts Muchnik degrees as the framework there are natural intermediate de-
grees. Interestingly, one of these natural examples is based on random reals.
One should note that at least one elementary cellular automaton, known as rule
30, exhibits strong pseudo-random behavior. It is tempting to speculate that
the classification of the orbits of rule 30, on sufficiently general types of con-
figurations, might provide another natural source of intermediate behavior. In
particular almost periodic configurations might suffice for this purpose.
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